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Enhanced 3D Perception for AD

Ø Monocular (front/ego view)/multimodality 3D Lane Detection

Ø 3D/4D Occupancy (world model)

Ø Semantic Segmentation and Semantic Completion
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Monocular 3D Lane Detection
Goal: localize lane boundaries in 3D space using a single monocular image.

Challenges:
• slenderness and elongation of lanes.
• depth absence in monocular images.

Predict



How to achieve end-to-end monocular 3D lane 
detection w/o surrogate representation?

design anchors post-processing distortion caused by IPM
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• Holistically: 
lane-level embedding

• Locally:
point-level embedding

• Lane-aware: 
Instance Activation Map-based features 
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Dynamic 3D Ground Positional Embedding 

encode the 3D plane as the positional embedding for image features. 
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Experimental Results

• Results on OpenLane
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Results Video
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3D Lane Detection

depth loss

illumunation 
sensitivity

Predict

Monocular Solutions
Challenges +

Goal: localize lane boundaries in 3D space based on inputs.

Existing Solutions: mainly formulate based on monocular images.

Inherent Challenges: slenderness and elongation of lanes.



Can We Utilize Multi-modal Data to Facilitate 3D Lane Detection?



Multi-modal 3D Lane Detection

LiDAR CAN HELP detect 3D lanes!

Luo, Y., et al. (2022). M 2-3DLaneNet: Exploring Multi-Modal 3D Lane Detection. Arxiv.
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Backbone

PV Features

End-to-End Multi-modal 3D Lane DetectionEnd-to-End Multi-modal 3D Lane Detection

Luo, Y., et al. (2023). LATR: 3D Lane Detection from Monocular Images with Transformer. ICCV.
Lang, Alex H., et al. (2019). Pointpillars: Fast encoders for object detection from point clouds. CVPR.
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DV-3DLane
Ø Bidirectional feature fusion

Ø Unified query generator

Ø 3D dual-view deformable attention
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DV-3DLane
Ø Bidirectional feature fusion
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DV-3DLane
Ø Unified query generator

1. Dual-view query generation

2. Dual-view query clustering

!

Dual-view 
Query Generation

PV Space Feature

BEV Space Feature

IAM

IAM

!"#

!$%#

Aux Instance Supervision

Decoder

Init Cluster Centers

New Cluster Centers

New Point Query

Query Clustering

!$%#

&"'()*+
Sum

⊕

!

-

.-

False Lane Positive Pair Negative Pair

Ground Truth LanesGround Truth Lanes

BE
V

La
ne

 P
re

di
ct

io
n

PV
La

ne
 P

re
di

ct
io

n

BE
V

La
ne

 P
re

di
ct

io
n

PV Lane Prediction

Lane

∅ ∅

∅ Background

(a) (b) (c)

GT Assignment



DV-3DLane
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DV-3DLane
Ø 3D dual-view deformable attention

Consistantly sample features from dual-view spaces.

3D Lane Prediction
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Comparison with other methods. 

Li, Z., et al. (2022). Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. ECCV.
Yang, Z., et al. (2022). Deepinteraction: 3d object detection via modality interaction. NeurIPS.
Chen, X., et al. (2023). Futr3d: A unified sensor fusion framework for 3d detection. ICCV.
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Results on OpenLane
Table 1: Comprehensive 3D Lane evaluation comparison on OpenLane with variable metrics. †
denotes the results obtained using their provided models. “Image-Branch” and “LiDAR-Branch”

refer to our image and LiDAR branches, respectively. “LATR + LiDAR” denotes the model that

combines the SOTA method LATR with LiDAR input, projecting all points into the image space

and using them as additional features in the network.

Dist. Methods Backbone Modality F1 """ Acc. """ X error (m) ### Z error (m) ###
near far near far

1.
5

m
PersFormer EffNet-B7 C 50.5 89.5 0.319 0.325 0.112 0.141

Anchor3DLane
†

EffNet-B3 C 52.8 89.6 0.408 0.349 0.186 0.143

M
2
-3DLaneNet EffNet-B7 C+L 55.5 88.2 0.283 0.256 0.078 0.106

Anchor3DLane
†

ResNet-18 C 50.7 89.3 0.422 0.349 0.188 0.146

PersFormer ResNet-50 C 52.7 88.4 0.307 0.319 0.083 0.117

LATR ResNet-50 C 61.9 92.0 0.219 0.259 0.075 0.104

DV-3DLane-Tiny (Ours) ResNet-18 C+L 63.4 91.6 0.137 0.159 0.034 0.063

DV-3DLane-Base (Ours) ResNet-34 C+L 65.4 92.4 0.118 0.131 0.032 0.053

DV-3DLane-Large (Ours) ResNet-50 C+L 66.8 93.3 0.115 0.134 0.029 0.049
Improvement - - "4.9 "1.3 #0.104 #0.122 #0.046 #0.055

0.
5

m

PersFormer EffNet-B7 C 36.5 87.8 0.343 0.263 0.161 0.115

Anchor3DLane
†

EffNet-B3 C 34.9 88.5 0.344 0.264 0.181 0.134

M
2
-3DLaneNet EffNet-B7 C+L 48.2 88.1 0.217 0.203 0.076 0.103

Anchor3DLane
†

ResNet-18 C 32.8 87.9 0.350 0.266 0.183 0.137

PersFormer ResNet-50 C 43.2 87.8 0.229 0.245 0.078 0.106

LATR ResNet-50 C 54.0 91.7 0.171 0.201 0.072 0.099

DV-3DLane-Tiny (Ours) ResNet-18 C+L 60.9 91.8 0.097 0.124 0.033 0.062

DV-3DLane-Base (Ours) ResNet-34 C+L 63.5 92.4 0.090 0.102 0.031 0.053

DV-3DLane-Large (Ours) ResNet-50 C+L 65.2 93.4 0.082 0.101 0.028 0.048
Improvement - - "11.2 "1.7 #0.089 #0.100 #0.044 #0.051

Table 2: Comparison with other 3D lane detection methods on the OpenLane validation dataset. †
denotes that the results are obtained using their provided models.

Dist. Methods Backbone Modality All Up & Curve Extreme Night Intersection Merge
Down Weather & Split

1.
5

m

PersFormer EffNet-B7 C 50.5 42.4 55.6 48.6 46.6 40.0 50.7

Anchor3DLane
†

EffNet-B3 C 52.8 48.5 50.7 56.9 43.6 48.5 50.7

M
2
-3DLaneNet EffNet-B7 C+L 55.5 53.4 60.7 56.2 51.6 43.8 51.4

PersFormer ResNet-50 C 52.7 46.4 57.9 52.9 47.2 41.6 51.4

LATR ResNet-50 C 61.9 55.2 68.2 57.1 55.4 52.3 61.5

Anchor3DLane
†

ResNet-18 C 50.7 45.3 53.7 48.5 51.6 45.3 48.5

DV-3DLane-Tiny ResNet-18 C+L 63.4 59.9 69.8 62.2 58.8 53.5 60.6

DV-3DLane-Base ResNet-34 C+L 65.4 60.9 72.1 64.5 61.3 55.5 61.6

DV-3DLane-Large ResNet-50 C+L 66.8 61.1 71.5 64.9 63.2 58.6 62.8
Improvement - - "4.9 "5.9 "3.9 "7.8 "7.8 "6.3 "1.3

0.
5

m

PersFormer EffNet-B7 C 36.5 26.8 36.9 33.9 34.0 28.5 37.4

Anchor3DLane
†

EffNet-B3 C 34.9 28.3 31.8 30.7 32.2 29.9 33.9

M
2
-3DLaneNet EffNet-B7 C+L 48.2 40.7 48.2 49.8 46.2 38.7 44.2

PersFormer ResNet-50 C 43.2 36.3 42.4 45.4 39.3 32.9 41.7

LATR ResNet-50 C 54.0 44.9 56.2 47.6 46.2 45.5 55.6

Anchor3DLane
†

ResNet-18 C 32.8 26.5 27.6 31.2 30.0 28.1 31.7

DV-3DLane-Tiny ResNet-18 C+L 60.9 56.9 65.9 60.0 56.8 50.7 57.6

DV-3DLane-Base ResNet-34 C+L 63.5 58.6 69.3 62.4 59.9 53.9 59.3

DV-3DLane-Large ResNet-50 C+L 65.2 59.1 69.2 63.0 62.0 56.9 60.5
Improvement - - "11.2 "14.2 "13.1 "13.2 "15.8 "11.4 "4.9

1



Results on Various Scenarios:
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Visualization
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Visualization

*frame-based results 
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RadOcc: Learning Cross-Modality Occupancy Knowledge 
through Rendering Assisted Distillation

Haiming Zhang 1,2, Xu Yan 3, Dongfeng Bai 3, Jiantao Gao 3, 
Pan Wang 3, Bingbing Liu 3, Shuguang Cui2,1,† and Zhen Li 2,1†

1 The Future Network of Intelligence Institute, The Chinese University of Hong Kong (Shenzhen), 
2 School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen),
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(AAAI 2024)
42



Background

43

Vision-based 3D Occupancy Prediction:

• Inputs: Multi-view camera images

• Outputs: 3D semantic occupancy

• Advantages: cost-effectiveness, general object
representation, suitable for unified models

• ...



Challenges

Challenges of Vision-based 3D Occupancy Prediction:

• Lack of geometric priors;

• 2D to 3D transformations;

• Semantic complete 3D scene details perception;

• ...

44



Related Work

• Forward projection methods;

Three Typical Solutions:

• Forward-Backward projection methods;

45

• Backward projection methods;



Related Work

• Forward projection methods;
LSS-based

Three Typical Solutions:

• Backward projection methods;

46

• Forward-Backward projection methods;



LSS-based method

Related Work

�Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d.
47

Framework

Lifting



Related Work

• Forward projection methods;
• LSS-based

Three Typical Solutions:

• Backward projection methods;
• BEVFormer

48

• Forward-Backward projection methods;



BEVFormer

Related Work

49

Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatio-temporal transformers. 



Related Work

• Forward projection methods;
• LSS-based

Three Typical Solutions:

• Backward projection methods;
• BEVFormer

50

• Forward-Backward projection methods;
• FB-OCC



FB-OCC

Related Work

51

FB-OCC: 3D Occupancy Prediction based on Forward-Backward View Transformation.



Related Work

52

Issues:

• More and more complex model structure;

• Heavy model parameters;

• Long-term training;

• ... ...



Motivation

Can we enhance existing models benefiting from knowledge distillation?

53

Strengths:

• Knowledge distillation could improve student model while do not
introduce burden during inference;

• Multi-modality model tend to achieve high performance more easily;



Motivation

Can we enhance existing models benefiting from knowledge distillation?

54

• Simply align the features or logits do not obtain satisfied results;

• We need to explore more effective knowledge distillation paradigm for 3D occupancy
representation;



RadOcc
Proposed Method

RadOcc, Rendering assisted distillation paradigm for 3D Occupancy prediction.

55



RadOcc
Framework

56

• Two models: teacher model and student model;

• Teacher model takes multi-modality data (images and LiDAR point cloud) as inputs;

• Student model can be any of a existing vision-based occupancy prediction model;



RadOcc
Volume Rendering

1) Accumulated transmittance:

3) Semantic rendering:

57

Voxel-based volume rendering

2) Depth rendering:



RadOcc
Rendered Depth Consistency (RDC)

2) RDC Loss:

58

Ray termination distribution aligning
1) Findings:

• Directly align depth maps is a hard constraint;

• Similar depths between teacher and student
models show great discrepancy in ray
distribution;

KL divergence



RadOcc
Rendered Semantic Consistency (RSC)

59

Segment-guided affinity distillation (SAD)
1) Pipeline:

• Utilizing VFM (i.e. SAM) to segment view
images;

• Grouping the rendered semantic logits based
on the segmentation patches;

• Applying average pooling within each group
to extract M semantic embeddings;

• Computing affinity matrix for student and
teacher model based on the semantic
embeddings:

Semantic embedding with shape (M, C)



RadOcc
Rendered Semantic Consistency (RSC)

60

Segment-guided affinity distillation (SAD)
2) RSC Loss:

KL divergence between rendered semantics



Results

Experimental Settings

Datasets

61

• Occ3D: dense 3D occupancy prediction dataset;

• nuScenes-lidarseg: sparse LiDAR semantic segmentation prediction dataset;

• Dense prediction: BEVDet as baseline, Swin-Transformer base as image backbone;

• Sparse prediction: TPVFormer as baseline, R101-DCN as image backbone;



Results
3D occupancy prediction performance on the Occ3D

62
• † denotes the performance reproduced by official codes;
• * means the results provided by authors;
• ‘-T’ represents results through test-time augmentation (TTA);



Results
LiDAR semantic segmentation results on nuScenes test benchmark

63

• † denotes the performance reproduced by official codes;



Results
Visualizations

64



Ablation

Ablation Study on Occ3D

• Latent ray distribution alignment is useful.

• Sorely aligning depth maps is not a good choice.

• RSC loss (including SAD and KL divergence) obviously improve performance. 65

• RDC(-) denotes directly aligning the rendered depth map with Scale-Invariant Logarithmic loss;



How about different kinds of knowledge distillation paradigms?

66

Discussion

• Sorely align the occupancy probabilistic logits improve performance slightly.
• Aligning the volume feature hinder the performance.
• Our rendering-assisted knowledge distillation, combined with logits alignment enhance 

performance a lot.



67

Conclusion

RadOcc: Learning Cross-Modality Occupancy Knowledge 
through Rendering Assisted Distillation:

• We propose a rendering assisted distillation paradigm, RadOcc, for 3D
occupancy prediction;

• Two novel consistency losses are introduced to achieve better alignment
between the rendered outputs;

• The proposed RadOcc achieves state-of-the-art performance on the Occ3D
and nuScenes benchmarks for dense and sparse occupancy prediction,
respectively.



World model based 4D occupancy forecasting and planning prediction



Outline

Enhanced 3D Perception for AD

Ø Monocular (front/ego view)/Multimodality 3D Lane Detection

Ø 3D/4D Occupancy (world model)

Ø Semantic Segmentation and Semantic Completion
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2DPASS
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2DPASS

Multi-Scale Fusion-to-Single Knowledge Distillation (MSFSKD)



2DPASS

SemanticKITTI-SingleScan



2DPASS

SemanticKITTI-MultiScan
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Challenge

ICCV2021 2nd Place Award�ECCV2022 3rd Place Award
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Joint single sweep LiDAR point cloud Semantic Segmentation by exploiting 
learned shape prior form Scene Completion network
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Results

1 http://www.semantic-kitti.org/tasks.html



Results



Sparse Single Sweep LiDAR Point Cloud Segmentation via 
Learning Contextual Shape Priors from Scene Completion

Thanks for watching !
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Outline

Enhanced 3D Reasoning

Ø Visual programming for open-world grounding using LLM

Ø 3D VQA without data bias



Visual Programming for Zero-shot 
Open-Vocabulary 3D Visual Grounding

Zhihao Yuan 1,2, Jinke Ren 1,2, Chun-Mei Feng4, Hengshuang Zhao3, Shuguang Cui 2,1, 
Zhen Li 2,1†

1 The Future Network of Intelligence Institute, The Chinese University of Hong Kong (Shenzhen), 
2 School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen),

3 The University of Hong Kong
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3D Zero-shot Grounding

Ø Problems

Ø Explore zero-shot 3DVG using LLMs, without the need of object-text pair annotation

Ø Solve spatial relationships between objects explicitly
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3D Zero-shot Grounding
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Ø Dialog with LLM: A Naive Approach

Ø Detect all objects in the scene, describe object's location and size

Ø Given the text prompt to ChatGPT to find the correct object

Query: This is a storage shelf. It is white in color and is above a desk with a chair in front of it.

Answer: Based on the description, we are looking for a storage shelf that is white in color and is above a desk with a chair in front
of it.
Looking at the room information, we can see that there are several objects identified as shelves, chairs, and desks. However, the
description also mentions that the shelf is above a desk, which means we need to look at the coordinates to determine the vertical
positioning of these objects.
The objects identified as shelves are: <obj 24>, <obj 75>, and <obj 76>. The objects identified as chairs are: <obj 1>, <obj 36>,
<obj 77>. The objects identified as desks are not explicitly mentioned, but we can consider objects like tables or nightstands as
potential desks: <obj 18>, <obj 58>.
Now, we need to find a combination of these objects where the shelf is above a desk and there is a chair in front of it. This requires
the shelf to have a higher z-coordinate (vertical position) than the desk, and the chair to have similar x and y coordinates
(horizontal position) as the desk.
After analyzing the coordinates, none of the objects seem to fit the description perfectly. However, the closest match could be <obj
24> (shelf), <obj 36> (chair), and <obj 18> (table as desk).
Please note that this is an approximation as the description does not perfectly match any set of objects in the room.
Answer: <obj 24>



3D Zero-shot Grounding

Ø Method

Ø Two zero-shot approaches for 3DVG
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3D Zero-shot Grounding
Ø How to solve the view problem in 3D space?

Ø Previous methods use data augmentation on text or object features

Multi-view transformer for 3d visual grounding (CVPR 22) ViewRefer: Grasp the Multi-view Knowledge 
for 3D Visual Grounding  (ICCV 23)



3D Zero-shot Grounding

Ø Method

Ø Addressing view-dependent relations: A shift to 2D egocentric view.

Ø Addressing view-independent relations: using 3D coordinates.
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3D Zero-shot Grounding
Ø Method

Ø LOC module: extend the scope of existing 3D object detectors into open-vocabulary scenarios.
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BOX0=LOC(object=storage box on the ground)



3D Zero-shot Grounding
Ø Results

Ø Our zero-shot approach can outperform some supervised baselines
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3D Zero-shot Grounding

Ø Visualization results
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3D Visual localization for AD



Outline

Enhanced 3D Reasoning

Ø Visual programming for open-world grounding using LLM

Ø 3D VQA without data bias for AD



3D VQA with manipulation to overcome data bias
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3D VQA with manipulation to overcome data bias



3D VQA with manipulation to overcome data bias



3D manipulation for AD
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Conclusion and Discussion

§ Perception is still important, especially in open-world, but maybe
precise perception limitation can be relaxed.

§ Reasoning is important for planning, especially for long-tailed
scenes, but maybe large models can help.

§ Close-loop evaluation is really important for end-to-end AD, sim-
to-real and real-to-sim dual-view can help.
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