

大规模自动驾驶仿真系统研究

张力

复旦大学

stuttgart_00

Visual segmentation - CVPR20, ECCV20, CVPR 2021, CVPR23

Multi-camera Input

Autonomous driving - CVPR20, ECCV20, ICCV 2023

3D detection - CVPR21, ICCV21, NeurIPS21, ECCV22, NeurIPS22, AAAI 23

Graphics-based simulation

⊗ Cost \$ 1million /km.

- Need Professional developers
- Not realistic. It is far from real world.
- Algorithms developed on it can't be directly used in real world.

Large-scale self-driving simulation

Motivation: NeRF Designed for Street Views

1. Vanilla NeRFs Camera Settings

- Object Centric Camera Settings
- Dense Image Overlap
- Meticulously Captured by Human
- Specialists

2. Camera Settings for Street Views

- Ego Centric Camera Settings
- Sparse Image Overlap
- Captured by Vehicles in Transit

with lots of noise

S-NeRF: Robust NeRF System for Street Views

We introduce S-NeRF a robust NeRF system for high-quality street view reconstruction for

both the large-scale background scenes and foreground vehicles

Background Scene Reconstruction

Foreground Vehicle Reconstruction

Augment NeRF model with LiDAR signals

Limited RGB overlap

LiDAR Sensor

Auxiliary Depth Supervision:

Given Camera Rays:
$$R(t) = \{\mathbf{o} + t\mathbf{d} | t \in \mathcal{R}^+\}$$

NeRF Termination Depth Rendering: $\hat{D}(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(t)dt$.
Depth Supervision: $\mathcal{L}_{depth} = \sum \|D(r) - \hat{D}(r)\|$

 $r \in R$

Issues:

1. Limited Operational Ranges

Sparse Point Cloud

2. Sparse Point Cloud Signals

Robust dense depth supervision

Sparse LiDAR

Depth Completion

Coarse Dense Depth Map

Final NeRF Depth Rendering

Dense Depth Supervision

Aggregated Confidence Map

S-NeRF: Neural Radiance Fields for Street Views, Ziyang Xie, Junge Zhang, Wenye Li, Feihu Zhang, Li Zhang – ICLR 2023

Multi-level

Confidence Aggregation

Multi-level confidence aggregation

Depth

RGB

1. Multi-Level Confidence Map

$$\mathcal{C}_{depth} = \gamma(|d_t - \hat{d}_t)|/d_s), \quad \gamma(x) = \begin{cases} 0, & \text{if } x \ge \tau, \\ 1 - x/\tau, & \text{otherwise.} \end{cases}$$

Final Confidence Map $\hat{C} = \sum_{i} \omega_i C_i$ $\sum_i \omega_i = 1$ $i \in \{depth, flow, rgb, ssim, vga\}$

 $\mathcal{C}_{flow} = \gamma(\frac{\|\Delta_{x,y} - f_{s \to t}(x_s, y_s)\|}{\|\Delta_{x,y}\|}), \quad \Delta_{x,y} = (x_t - x_s, y_t - y_s).$

3. Confidence based Dense Depth supervision

$$\mathcal{C}_{\mathsf{rgb}} = 1 - |\mathcal{I}_s - \hat{\mathcal{I}}_s|, \quad \mathcal{C}_{\mathsf{ssim}} = \mathsf{SSIM}(\mathcal{I}_s, \hat{\mathcal{I}}_s)), \quad \mathcal{C}_{\mathsf{vgg}} = 1 - ||\mathcal{F}_s - \hat{\mathcal{F}}_s||. \qquad \mathcal{L}_{depth} = \sum_{r \in R} \hat{\mathcal{C}}(r) ||D(r) - \hat{D}(r)||$$

Camera transformation for moving vehicles

Given original camera pose P_i and the 3D bounding box of the target vehicle P_b

The transformed camera system treats the target car (moving object) as static and then compute the relative camera poses for the ego car's camera.

$$\hat{P}_{i} = (P_{i}P_{b}^{-1})^{-1} = P_{b}P_{i}^{-1}, P^{-1} = \begin{bmatrix} R^{T} & -R^{T}T \\ \mathbf{0}^{T} & 1 \end{bmatrix}$$

$$\overbrace{\text{Ego Vehicle Trajectory}}_{\text{Cameras}} \xrightarrow{\text{Ego Vehicle Trajectory}}_{P_{i}^{h-1}} \xrightarrow{P_{i-1}} \xrightarrow{\hat{P}_{i-1}} \xrightarrow$$

S-NeRF: Robust NeRF System for Street Views

Results

S-NeRF significantly outperforms previous State-of-the-Art Models by a large margin

In both the background reconstruction and foreground vehicle reconstruction

qualitatively and quantatively

Further applications

S-NeRF offers a range of powerful features that enable advanced scene manipulation.

Input video for reconstruction

Rendering novel views and insert new cars

Rendering with lightning variations

Rendering novel trajectory

S-NeRF: Neural Radiance Fields for Street Views

Ziyang Xie*, Junge Zhang*, Wenye Li, Feihu Zhang, Li Zhang Fudan University

Periodic Vibration Gaussian: Dynamic Urban Scene Reconstruction and Real-time Rendering

Yurui Chen^{1*} Chun Gu^{1*} Junzhe Jiang¹ Xiatian Zhu² Li Zhang^{1⊠} ¹ Fudan University ² University of Surrey

*Equally contributed

We present: **Periodic Vibration Gaussian** (PVG), a model adept at capturing the diverse characteristics of various objects and materials within **dynamic urban scenes** in a **unified formulation**.

To enhance temporally coherent and large scene representation learning with sparse data, we introduce a novel flow-based temporal smoothing mechanism and a position-aware adaptive control strategy respectively.

Without relying on manually labeled object bounding boxes or expensive optical flow estimation, PVG exhibits 50/6000-fold acceleration in training/rendering over the best alternative.

PVG (Ours) 50 FPS

Image Reconstruction on Waymo

Rendered RGB, Depth and Semantic

V

Image Reconstruction on Waymo

Comparison with static methods

Image Reconstruction on Waymo

Comparison with dynamic methods

Novel View Synthesis on Waymo

NeRF-LiDAR

NeRF-LiDAR: Generating Realistic LiDAR Point Clouds with Neural Radiance Fields, Junge Zhang, Feihu Zhang, Shaochen Kuan, Li Zhang – AAAI 2024

Large-scale 3D urban scene generation

World volume generation

Multi-camera driving scene generation

Large-scale 3D urban scene generation

Large-scale 3D urban scene generation

Large-scale 3D urban scene generation

Large-scale 3D urban scene generation

Large-scale 3D urban scene generation

Large-scale 3D urban scene generation

路网: 道路关键点位置、中心线曲线形状、中心线连接关系

Tesla "Language of Lanes"

模型结构(Auto-Regressive)

改进——半自回归: 模型结构(Semi-Autoregressive)

1、DETR结构检测有明显视觉特征的点 2、半自回归网络结构,子序列内自回归预测,子序列间并行预测 (起始点和分叉点) 速度比完全自回归提升六倍,且效果优于完全自回归方法

进一步改进——masked language modeling 完全并行 (None-Autoregressive)

Ego3RT: Learning Ego 3D Representation as Ray Tracing

https://fudan-zvg.github.io/Ego3RT

Jiachen Lu¹ Zheyuan Zhou¹ Xiatian Zhu² Hang Xu³ Li Zhang¹ ¹Fudan University ²University of Surrey ³Huawei Noah's Ark Lab

- Disadvantages of Cartesian
 - Down-sampling in non-far region leads to information loss
 - Over-sampling in far region is useless

So we choose **Polar coordinate consistent** with imaging process

PolarFormer: Multi-camera 3D object detection with polar transformers – Yanqin Jiang, Li Zhang, Zhenwei Miao, Xiatian Zhu, Jin Gao, Weiming Hu, Yu-Gang Jiang – AAAI 2023 Oral

Multi-camera 3D detection (PolarFormer)

PolarFormer: Multi-camera 3D object detection with polar transformers – Yanqin Jiang, Li Zhang, Zhenwei Miao, Xiatian Zhu, Jin Gao, Weiming Hu, Yu-Gang Jiang – AAAI 2023 Oral

PolarFormer: Multi-camera 3D object detection with polar transformers – Yanqin Jiang, Li Zhang, Zhenwei Miao, Xiatian Zhu, Jin Gao, Weiming Hu, Yu-Gang Jiang – AAAI 2023 Oral

Encoder-decoder architecture

- Set prediction
- Bipartite matching
- Modality interaction in both the encoder and decoder
 - **Representational interaction** in the encoder
 - Predictive interaction in the decoder

- Encoder aims at constructing more powerful representations via multi-modal representational interaction.
- Hierarchical structure
 - Composed by stacking multiple encoder layers which takes as input two modalityspecific scene representations and produces two enhanced representations as output.
- Extensive interaction
 - Multi-modal representational interaction (MMRI)
 - Intra-modal representational learning (IML)
 - Representational interaction

(a) Representational interaction from image to LiDAR

(b) Representational interaction from LiDAR to image

- Iterative query refinement
- Aggregating information from heterogenous scene representations in an unified manner – MMPI
 - MMPI-Image
 - MMPI-LiDAR
- Alternating interaction of two modalities.

(b) Multi-modal predictive interaction layer (MMPI)

• We achieve the state-of-the-art performance on the highly competitive nuScenes 3D detection benchmark.

 The ensemble version of DeepInteraction-e now ranks 1st on the nuScenes leaderboard.

Table 1: Comparison with state-of-the-art methods on the nuScenes test set. Metrics: mAP(%), NDS(%). 'L' and 'C' represent LiDAR and camera, respectively. † denotes test-time augmentation is used. § denotes that test-time augmentation and model ensemble both are applied for testing.

Mathad	Modelity		Backbones	valid	ation	test			
Method	Modality	Image	LiDAR	mAP↑	NDS↑	mAP↑	NDS↑		
BEVDet4D [17]	C	Swin-Base	.=	42.1	54.5	45.1	56.9		
BEVFormer [25]	С	V99	-	-	-	48.1	56.9		
Ego3RT [31]	C	V99	-	47.8	53.4	42.5	47.9		
PolarFormer [19]	C	V99	1.	50.0	56.2	49.3	57.2		
CenterPoint [45]	L	-	- VoxelNet		66.8	60.3	67.3		
Focals Conv [8]	L	-	VoxelNet-FocalsConv	61.2	68.1	63.8	70.0		
Transfusion-L [1]	L		VoxelNet	65.1	70.1	65.5	70.2		
LargeKernel3D [9]	L	-	VoxelNet-LargeKernel3D	63.3	69.1	65.3	70.5		
FUTR3D [7]	L+C	R101	VoxelNet	64.5	68.3	-	37 		
PointAugmenting [39]†	L+C	DLA34	VoxelNet	-	-	66.8	71.0		
MVP [46]	L+C	DLA34	VoxelNet	67.1	70.8	66.4	70.5		
AutoAlignV2 [10]	L+C	CSPNet	VoxelNet	67.1	71.2	68.4	72.4		
TransFusion [1]	L+C	R50	VoxelNet	67.5	71.3	68.9	71.6		
BEVFusion [26]	L+C	Swin-Tiny	ny VoxelNet		71.0	69.2	71.8		
BEVFusion [30]	L+C	Swin-Tiny	VoxelNet	68.5	71.4	70.2	72.9		
DeepInteraction-base	L+C	R50	VoxelNet	69.9	72.6	70.8	73.4		
Focals Conv-F [8]†	L+C	R50	VoxelNet-FocalsConv	67.1	71.5	70.1	73.6		
LargeKernel3D-F [9]†	L+C	R50 VoxelNet-LargeKerr		-	-	71.1	74.2		
DeepInteraction-large†	L+C	Swin-Tiny	VoxelNet	72.6	74.4	74.1	75.5		
BEVFusion-e [30]§	L+C	Swin-Tiny	VoxelNet	73.7	74.9	75.0	76.1		
DeepInteraction-e §	L+C	Swin-Tiny	VoxelNet	73.9	75.0	75.6	76.3		

nuScenes 3D detection

	<i>·</i> ⊘·NUS		Motional		Home	nuPlar		JSCENES by A	Motional		Home	nuPlan	nuScen		∕©∙NUS	SCENES by A	Notional		Home	nuPlan	nuSce	enes	nulmages	nuR	eality 🛛	
nuScenes detection task							nuSce	enes det	ection	<			nuScenes detection task													
Leaderboard							Leaderboard								Leaderboard											
Sear	ch:			E>	kport as JS	ON	Search:			Ex	port as JS)	ON		Sear	ch:			Ex	port as JS	ON		Lidar ti	ack		Vision	trad
Method					Method									N	lethod	Met					Metrics	trics				
	Date	Name	Modalities	Map data	External data	mAP	Date	Name	Modalities	Map data	External data	mAP	mATE (m)	(Date	Name	Modalities	Map data	External data	mAP	mATE (m)	mASE (1-IOU)	mAOE (rad)	mAVE (m/s)	mAAE (1-acc)	ľ
_			Camera 👻	All 👻	All 👻				Camera 👻	All 👻	All 👻						Any –	All 👻	All –							
>	2022-02-08	FudanZVG-TPD-e	Camera	no	yes	0.440	> 2022-04-1	1 bevdepth	Camera	no	yes	0.503	0.445	>	2022-06-27	DeepInteraction-e	Camera, Lidar	no	no	0.756	0.235	0.233	0.328	0.226	0.130	0
>	2021-12-19	BEVDet	Camera	no	yes	0.424	> 2022-06-0	1 PETRv2	Camera	no	yes	0.490	0.561	<u> </u>	2022-06-03	BEVEusion-e	Camera Lidar	no	no	0.750	0 242	0.227	0 320	0 222	0 130	0
>	2021-10-13	DETR3D	Camera	no	yes	0.412	> 2022-05-1	8 PolarFormer	Camera	no	yes	0.493	0.556		2022 00 00	DEVI dision e	camera, Elaar	110	110	0.750	0.2.12	0.227	0.520	0.222	0.150	0
>	2021-06-15	DD3D	Camera	no	yes	0.418	> 2022-04-1	8 BEVDet4D	Camera	no	no	0.451	0.511	>	2022-06-26	DeepInteraction-la	Camera, Lidar	no	no	0.741	0.244	0.232	0.322	0.223	0.133	0
>	2021-12-18	BEVDet-pure	Camera	no	no	0.398	> 2022-03-1	0 BEVFormer	Camera	no	yes	0.481	0.582	>	2022-01-13	FusionVPE	Camera, Lidar	no	no	0.733	0.235	0.227	0.284	0.243	0.128	0
>	2022-01-18	FudanZVG-TPD	Camera	no	no	0.401	> 2022-05-1	1 UVTR-Camera	Camera	no	yes	0.472	0.577	>	2021-05-25	Centerpoint-Fusion	Camera, Lidar, R	no	yes	0.724	0.237	0.227	0.318	0.211	0.133	0
>	2021-11-12	IPD3D	Camera	no	no	0.387	> 2022-05-1	6 PolarFormer-pure	Camera	no	no	0.456	0.610	>	2022-06-16	LargeKernel-F	Camera, Lidar	no	no	0.711	0.236	0.228	0.298	0.241	0.131	0

S-Agents: Self-organizing Agents in Open-ended Environments

workerb

Jiaqi Chen* Yuxian Jiang* Jiachen Lu Li Zhang

Fudan University

https://github.com/fudan-zvg/S-Agents

THANK YOU!

Project

Code

