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Abstract

This report introduces the 1st place winning solution for
the Autonomous Driving Challenge 2023 - Online HD-map
Construction♭. By delving into the vectorization pipeline,
we elaborate an effective architecture, termed as MachMap,
which formulates the task of HD-map construction as the
point detection paradigm in the bird-eye-view space with
an end-to-end manner. Firstly, we introduce a novel map-
compaction scheme into our framework, leading to reduc-
ing the number of vectorized points by 93% without any ex-
pression performance degradation. Build upon the above
process, we then follow the general query-based paradigm
and propose a strong baseline with integrating a powerful
CNN-based backbone like InternImage, a temporal-based
instance decoder and a well-designed point-mask coupling
head. Additionally, an extra optional ensemble stage is uti-
lized to refine model predictions for better performance.
Our MachMap-tiny with IN-1K initialization achieves a
mAP of 79.1 on the Argoverse2 benchmark and the further
improved MachMap-huge reaches the best mAP of 83.5,
outperforming all the other online HD-map construction
approaches on the final leaderboard with a distinct perfor-
mance margin (> 9.8 mAP at least).

1. Introduction
As one of the fundamental modules in the autonomous-

driving, high-definition map (HD-map) provides centimeter
level environment information for ego-vehicle navigation,
including detailed geometric-topology relationships and se-
mantic map categories, e.g. ped-crossing, lane-divider
and road-boundary. Recently, with the development of
deep neural network, online construction of local HD-map
from onboard sensors (cameras) has gradually become a
more advantageous and potential solution.
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Figure 1. The illustration of our HD-map processing principles.
(a) the original ground truth given in challenge. (b) reorder poly-
lines to keep the inter-element direction consistency. (c) remove
redundancy to keep the intra-element sequence compactness.

The Online HD-map Construction Track aims to dynam-
ically construct local HD-map from onboard surrounding
camera images. In this task, a local HD-map ground truth
in Fig.1 (a) is described by a set of map elements with three
semantic categories and each element is designed to a poly-
line, which consists of a set of ordered points, to deal with
complicated and even irregular road structures. Our method
mainly focuses on three aspects to handle the competition,
(1) map modeling principles. We propose the principles
of inter-element direction consistency and intra-element se-
quence compactness to reduce the intrinsic redundancy of
polyline-based map modeling. Concretely, without losing
any expression performance, the flow directions of point se-
quences between different elements should be as consistent
as possible, and the point sequences within the same map
element should be reserved with as few points as possible.
(2) temporal-fusion instance decoder. Based on the multi-
cameras features from image backbone, we then employ
a temporal-fusion based bird-eye-view (BEV) feature de-
coder for view-transformation and a bottom-up point-wise
instance decoder to extract point descriptor.

Verified as the Outstanding Champion and Innovation Award in the Online HD Map Construction Challenge by the Organizing Committee.
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Figure 2. The architecture of our proposed MachMap. Given surrounding images, we generate 2D features from each of views through
image backbone and neck. Then the deformable attention are used to aggregate the 3D feature among different views and average it along
z-axis. The temporal fusion module fuses the new BEV feature with the one of hidden state of BEV feature, based on which the hidden
state is updated. Finally, we conduct instance decoder which utilize instance-level deformable attention to refine content and points features
and format the final results. It is worth noting that the results of ped-crossing and lane-divider are thinned from the mask.

(3) point-mask coupling head. Considering that different
map elements have distinct shape priors, e.g. lane-divider
is usually polyline and ped-crossing is convex polygon, we
equip each semantic map category with both segmentation
and detection heads under the MaskDINO [6] framework,
which greatly improves the flexibility and scalability of our
model. Furthermore, the above multi-task training strategy
also accelerates the model convergence performance.

Inspired by the above motivations, we propose an end-to-
end vectorized HD-map construction architecture, named as
MachMap. The entire framework is illustrated in Fig.2 and
all technical details are presented in the next section.

2. Method
This section introduces the details of our winning

method. We first present the map compaction pipeline,
which significantly reduces the difficulty of model training
and makes the inference results more compact and efficient.
Next the design scheme of each module is presented, and
some task-specific improvements are integrated into some
off-the-shelf methods. Lastly, we introduce our novel en-
semble ideas, which can further enhance our approach.

2.1. Map Compaction Pipeline

Different from rasterized scheme, vectorized HD-maps
in the given annotations explicitly express the spatial re-
lation between map elements and instance information in
their respective categories. Following the newly proposed
map modeling principles, we compact the original evenly
sampled map representation in two steps, namely orienta-
tion rearrangement and redundancy removal.
(1) inter-element direction consistency. The directions of
elements in original map annotations are in a state of chaos,
such as lane-dividers of moving forward from front-to-back
or back-to-front as shown in Fig.1 (a). We noticed that the
inconsistency of directions can negatively affect the training

of the model. To reduce the discreteness of map organiza-
tion, we follow a certain strategy to make the orientation of
map elements as orderly as possible, and guarantee that this
process does not lose any details of the map. Specifically,
under the principle of conforming to the observation order
of human eyes, a simple and intuitive strategy is to reorga-
nize all polylines according to the rules from-front-to-back
and from-left-to-right in bird-eye-view space.
(2) intra-element sequence compactness. Vectorized maps
with evenly-distributed points have redundant semantic in-
formation, while compacted-points representation is sparse,
which is more suitable for expression and storage of maps.
To this end, we extract keypoints for all elements to super-
vise model training. Concretely, we adopt Douglas-Peucker
algorithm [11] and Visvalingam algorithm [12] to condense
a polyline composed of line segments to a similar polyline
with fewer points. For these methods, points are removed in
order of least to most importance, with importance related
to the distance and triangular area respectively.

2.2. MachMap Architecture

We follow the general query-based design paradigm [5,
10], as illustrated in the Fig.2, where the overall structure
can be roughly divided into three parts: BEV feature ex-
tractor, temporal-fusion instance decoder, and point-mask
coupling head. Afterwards, we introduce each module se-
quentially according to the flow of information.
Backbone. Giving a list of 2D images I ∈ RN×3×H×W ,
extracting unified textures representation within images is a
top-priority task. With regards to this, we utilize a shared
InternImage [13] as strong backbone to extract image fea-
tures, which employs deformable convolutions [1] as its
core operator and has been meticulously designed. Dur-
ing the downsampling process, a series of feature maps in
varying scales are generated and then aggregated by the Bi-
directional Feature Pyramid Network, i.e. BiFPN [16].



Multi-view Encoder. Since the map vectors we ultimately
need to predict lay in 3D space, it is necessary to elevate sur-
rounding features from camera-view to 3D ego-view space.
Rather than direct transformation to 3D-view, we predefine
a set of reference points and arrange them in a BEV raster.
After that, we employ the camera intrinsics and extrinsics
to project them onto several images and then aggregate the
surrounding features. By averaging on the z-axis, we obtain
the final bird-eye-view features B ∈ RHB×WB×C .
Temporal Fusion Module. The provided dataset is col-
lected and organized chronologically, with precise poses for
each sample. This makes it possible to align current features
with previous ones by poses, resulting in a larger real-world
perception range beyond the current position. We follow the
long-term fusion strategy proposed in VideoBEV [3], which
affines the previous hidden state Ht−1 of BEV feature into
the current one Bt−1 using vehicle ego pose. The latter is
concatenated with the current BEV feature Bt in the channel
dimension and fused by a 1× 1 convolutional layer as,

Bt−1 = Affinepre→cur(Ht−1) (1)
Ht = Conv1×1(Bt−1 ⊕ Bt) (2)

where ⊕ denotes the concatenation operator. The fused fea-
tures are cached as the next hidden state and used as in-
put for subsequent instance decoder. In practice, since the
timestamp offset between adjacent frame is too small, we
group the timestamps at specific intervals to expand the per-
formance gain brought by this temporal-fusion module.
Instance Decoder. To benefit from multi-task loss, we opt
for the MaskDINO [6] framework, which conducts ob-
ject detection and segmentation tasks simultaneously. Each
query consists of content and position vectors, with the for-
mer is utilized to generate instance masks, while the latter
undergoes iterative updates to yield normalized coordinates
directly. Yet, due to the hierarchical relationship between
map elements and their corresponding points sets, we adopt
the query design paradigm in MapTR [7] for better adapta-
tion to map element modeling. This implies that the query
is point-wise, and a set of which can be aggregated to form a
single instance and obtain its corresponding instance mask.
Output Head. Using only coordinates from point regres-
sion has some drawbacks. Firstly, there is a keypoint mis-
matching issue, where a well predicted instance may oc-
cur a mismatched point which belongs to other instance, as
a result, a single bad apple spoils the whole bunch. Sec-
ondly, for ped-crossing, there exists a strong geometric
prior, which is difficult to depict through vectors. However,
masks not only can effectively constrain the geometry shape
of instances, but it also impose a significant penalty on mis-
matched points during training. Empirically, we obtain ped-
crossing and lane-divider through post-processing of in-
stance masks, while point regression is employed only for
road-boundary. As the common practice, we adopt cross-

entropy and dice loss [9] for masks and L1 loss for point
regression. In addition, we also add semantic loss to the
BEV features as auxiliary supervision, and our final loss as,

L = λclsLcls + λptsLpts + λmaskLmask + λsemLsem (3)

where λ⋆ is the balance weight for different losses.

2.3. Ensemble Strategy

The predicted map vectors of our model are represented
in normalized coordinates, which are then rescaled to the
actual range 60 × 30m in the ego coordinate system dur-
ing the post-processing stage. Yet the actual visible content
from images greatly exceeds this range, which often leads to
ambiguities in the existence of certain elements at the bor-
der position of exact map region that may be ignored by a
single model. Accordingly, the use of ensemble techniques
can mitigate prediction variability and curb overfitting by
summarizing multiple models together.

By utilizing chamfer distance as a metric for measuring
the similarity between instances, we present the ensemble
algorithm in the Algorithm 1. Given a base set and a list
of proposals, which are derived from multiple other pre-
dictions and sorted by confidence in descending order, we
can compare each proposal with the base set one by one.
If their similarity is low, we can consider them as missed
true positives and add them to the base set. In addition
to multi-model ensemble, we also conduct multi-frame en-
semble. Despite the utilization of temporal fusion module,
some instances are still absent, which were accurately re-
called in previous frames. This inspires us to compensate
some erratic predictions by ensemble with predictions from
previous frames. It’s worth noting that the integration of
multi-frame and multi-model can share the same algorithm,
with only modifying the source of candidate proposal list.

Algorithm 1 MachMap Ensemble Algorithm
Input: Base-list B, Proposal-list P and score-list S, CD-threshold T
Output: Added proposal list and score A,AS
1: P, S ←SortProposalByScore(P, S)
2: A← [], AS ← []
3: while P.length ̸= 0 do
4: Flag ← False
5: Head← P.pop , HeadScore← S.pop
6: for Base in B do
7: Sim← ChamferDistance(Head,Base)
8: if Sim < T then
9: Flag ← True

10: break
11: end if
12: end for
13: if Flag then
14: B.append(Head)
15: A.append(Head)
16: AS.append(HeadScore · σ) ▷ σ is a score decay factor
17: end if
18: end while



Category # images # instances # points (raw) # points (compacted) AP0.2m AP0.3m AP0.4m AP0.5m

ped-crossing 19523 55686 3593548 252219 (↓ 93.0%) 98.33 99.46 99.92 100.00
lane-divider 26222 133186 7426425 335534 (↓ 95.5%) 99.91 99.98 99.99 100.00

road-boundary 27283 84384 7018193 469533 (↓ 93.3%) 97.38 99.70 99.92 100.00

Table 1. The effectiveness and correctness verification of map compaction principles. All statistical numbers are collected on both
training and validation sets. Note that # means ’the number of’ and the blue color means the proportion of point reduction. APτ indicates
that the average precision between before and after the compaction, where a prediction as true-positive only if the distance is less than τ .

ID Data Backbone PreTrain # Epochs w/o Opt. APcrossing APdivider APboundary mAP

1 train tiny ADE20K 6 ✗ 61.01 65.87 65.70 64.19
2 train tiny ADE20K 72 ✗ 76.75 73.51 74.68 74.98
□ train+val tiny ADE20K 72 ✗ 78.34 74.74 76.02 76.37
3 train+val tiny from - □ ⇝ 6 ✓ 84.82 79.66 80.63 81.70
♡ train+val huge ADE20K 36 ✗ 81.45 75.34 77.14 77.98
4 train+val huge from - ♡ ⇝12 ✓ 86.66 81.54 82.29 83.50

△ train+val tiny IN-1K 72 ✗ 76.46 72.32 75.91 74.90
5 train+val tiny from - △ ⇝ 6 ✓ 82.01 76.23 79.10 79.11

Table 2. The performance of different MachMap milestone models under thresholds of [0.5, 1.0, 1.5]m. we employ InternImage [13] as
backbone and ’tiny/huge’ means its scale. The ’from -□/♡/△’ means loading corresponding checkpoint and⇝ is more epochs finetuning.
Note the weights of ADE20K/IN-1K are public. The term Opt. means our improving techniques, e.g. ema, ida, temporal and ensemble.

3. Experiments

3.1. Existing Benchmarks

The Argoverse2 [14] contains 700, 150 and 150 video
clips in the training, validation, and testing sets respectively.
Each sequence has 6-DOF map-aligned pose and seven
ring views with the image resolution of 2048 × 1550 or
1550×2048 pixels. The given data from challenge is a sub-
set of Argoverse2. We utilize all frames from the challenge
training set to verify the effect of different ablations but fi-
nally all frames from training and validation sets are used to
reach better performance. We focus on three categories, i.e.
lane-divider, ped-crossing and road-boundary.

3.2. Implementation Details

Training Setup. We adopt common data augmentation, e.g.
random scaling, cropping, and flipping. At the same time,
an IDA [4] matrix is updated to record view transformation
to maintain spatial consistency. Then the final input shape
is fixed at 896×768, as this aspect ratio is close to the front
view, i.e. 2048×1550, which contains the most abundant vi-
sual map information. For BEV features, the default spatial
shape of BEV queries is 64× 32, which corresponds to the
perception ranges in lidar coordinate system are [−30, 30]m
for the Y-axis and [−15, 15]m for the X-axis. Note all map
masks are interpolated to 400 × 200 to ensure that distinct
elements can be easily distinguished without occupying too
much memory. As for the hyperparameters of loss function,
we set λcls, λpts, λmask, λsem to 2, 20, 1, and 3 respectively.
Training Strategy. We train our model with a total batch of
8 on 8 GPUs. The AdamW [8] optimizer is employed with

Rank Team APcrossing APdivider APboundary mAP

1 Mach (ours) 86.66 81.54 82.29 83.50
2 MapNeXt 68.94 76.66 75.34 73.65
3 SCR 70.37 75.08 74.73 73.39
4 LTS 72.67 73.20 71.80 72.56
5 USTC-VGG 69.05 73.24 70.76 71.02

Table 3. Top 5 entries on the test leaderboard of challenge.

a weight decay of 5× 10−2 and a learning rate of 3× 10−4.
Our training process consists of two stages: base training
and fine-tuning. Firstly, we initialize the InternImage [13]
with public pretrained weights [2, 15] and then train our
model for 60 epochs without any tricks except a multi-step
schedule with milestone [0.7, 0.9] and γ = 1

5 . Afterward,
we apply all proposed improving techniques to fine-tune the
model for extra epochs with a learning rate of 1× 10−4.

3.3. Experimental Results

Table 1. Our statistical results show the compacted map
can reduce more than 93% points without expression perfor-
mance losing under the threshold of 0.5m, even it can still
maintain more than 97% performance under stricter 0.2m.
Table 2. Comparing the results in row-1&2, training more
epochs brings a performance gain of more than 10 points,
which shows that accelerating the convergence speed is still
a vital future work. Compared with row-3&4, 5&6, 7&8,
using the proposed improving techniques can always bring
more than 5 points of increase. Moreover, even starting with
IN-1K as pretrained weights, our model still achieves 79.1.
Table 3. We succeed the championship with a performance
advantage of 9.85 mAP over the second place, demonstrat-
ing the effectiveness of our proposed MachMap method.
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