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Abstract

This technical report presents the third winning model
for Online HD Map Construction, a task newly introduced
in CVPR 2023 Autonomous Driving Challenge. Compared
to conventional lane detection, the constructed HD map
provides more semantics information with multiple cate-
gories. Given inputs from onboard sensors (cameras), the
goal is to construct the complete local HD map. We address
this problem by proposing MapSwin which is based MapTr,
but we have come up with some more effective ways to im-
prove the performance of the model, including more pow-
erful backbone, better View Transformation, more effective
data augmentation and effective supervision. As a result,
we achieved the overall third place in this challenge.

1. Introduction
Constructing HD maps is a central component of au-

tonomous driving. In the conventional approach, HD maps
are typically constructed offline using SLAM-based meth-
ods. This process involves a complex pipeline and results in
high maintenance costs. However, there has been a grow-
ing interest in online HD map construction. This approach
involves constructing maps in real-time around the ego-
vehicle using sensors mounted on the vehicle itself. By
adopting this method, the need for offline human efforts
is eliminated. Online HD map construction task aims to
dynamically construct the local semantic map based on on-
board sensor observations. Compared to lane detection, our
constructed HD map provides more semantics information
of multiple categories. Vectorized map representation are
adopted to deal with complicated and even irregular road
structures. The goal of the online HD map construction task
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Figure 1. High-definition (HD) map is composed of instance-level
vectorized representation of map elements (pedestrian crossing
(blue), lane divider (red), road boundaries (green), etc.). Given
inputs from onboard sensors (cameras), the goal is to construct the
complete local HD map.

is to construct the local HD map from onboard sensor ob-
servations. A local HD map can be described by a set of
map elements with different categories, e.g. road divider,
road boundary and pedestrian crossing as shown in Fig 1.

To solve this challenge, we propose a new model named
MapSwin which is based MapTr. Additionally, we also per-
form ablation study to investigate the effect of our different
module as shown in Sec. 3.4.

2. Our Model
In this section, we present our approach to deal with on-

line HD map construction which is introduced in CVPR
2023 autonomous driving challenge. The overall architec-
ture of our model is shown in Fig. 2.

2.1. Backbone

High-definition (HD) map is the high-precision map
specifically designed for autonomous driving, composed of
instance-level vectorized representation of map elements
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Figure 2. The overall architecture of our method which is based on MepTr [4] The sensor input is transformed into a unified Bird’s Eye
View (BEV) representation by the map encoder. This encoding process effectively converts the sensor data into a standardized map format.
In terms of decoding, the map decoder utilizes a hierarchical query embedding scheme to explicitly encode the different elements of the
map.

(pedestrian crossing, lane divider, road boundaries, etc.) In
this challenge, the input data is surrounding cameras im-
ages, so we need a strong backbone to obtain 2D image fea-
tures. During inference, we feed multi-camera images to the
backbone network (e.g., ResNet-50 and swin-base), and ob-
tain the features Fi = {Fi}Nview

i=1 of different camera views,
where Fi is the feature of the i-th view, Nview is the total
number of camera views. In different versions of MapTr
[4], they experimented with different backbones, such as
ResNet-50, Swin-tiny [5], Swin-base [5], etc. Based on
this, we tried other backbones, such as ConvNeXt [6].

2.2. View Transformation

MapTR [4] uses GKT [1] as the default 2D-to-BEV
transformation module. We replace GKT with the Spa-
tial Cross-Attention layer proposed by BEVFormer [3].
Furthermore, we delete the Temporal Self-Attention layer
which is used to incorporating historical BEV features. Af-
ter the multi-scale 2d image features are obtained, they are
converted into BEV features through multiple spatial en-
coder layer.

2.3. Head

Following MapTR, we use a hierarchical query embed-
ding scheme to explicitly encode each map element. Specif-
ically, we define a set of instance-level queries and a set of
point-level queries shared by all instances. Each map ele-
ment corresponds to a set of hierarchical queries which is
the sum of the first two.

The head contains several cascaded decoder layers which
update the hierarchical queries iteratively. In each decoder
layer, we adopt MHSA to make hierarchical queries ex-

change information with each other. We then adopt De-
formable Attention [7] to make hierarchical queries inter-
act with BEV features, following BEVFormer. Each query
predicts the 2-dimension normalized BEV coordinate of the
reference point. We then sample BEV features around the
reference points and update queries.

The prediction head consists of a classification branch
and a point regression branch. The classification branch
predicts instance class score. The point regression branch
predicts the positions of the point sets.

2.4. Loss

The loss function is composed of four parts, classifica-
tion loss, point2point (p2p) loss, edge direction loss and
point2line (p2l) loss. The first three are inspired by MapTR.
The point2line loss is inspired by VMA [2]. The total loss
is formulated as:

L = λLcls + αLp2p + βLdir + γLp2l (1)

Lcls =

N−1∑
i=0

LFocal(p̂̂(i), ci) (2)

Lp2p =

N−1∑
i=0

I{ci ̸=∅}

Nv−1∑
i=0

D(P,Q) (3)

Lp2l =

N−1∑
i=0

I{ci ̸=∅}

Nv−1∑
i=0

1

2
[D(P,Lleft) +D(P,Lright)]

(4)
where λ, α, β and γ are the weights for balancing differ-

ent loss terms. P matches Q in Hungarian match. Lleft and



Lright are the two adjacent edges of Q. The direction loss
is similar to MapTR.

The p2p loss is the L2 distance between paired points,
while the p2l loss is the point-to-line distance between pre-
dicted point and the two adjacent edges.

2.5. Data augmentation

During the training process, we also apply some classical
data augmentation methods.

To make the model more robust to different orientations
of objects or scenes of low visibility it might encounter dur-
ing inference, we apply geometric and photometric distor-
tion. We tried some geometric methods such like flip, resize
and rotation. But at last we only apply flip as a geometric
distortion because of its effectiveness in our experiment.

We also find that the number of instances containing
pedestrian crossing is smaller than that of instances con-
taining the other two classes. So we apply CBGS (Class-
balanced Grouping and Sampling) methods on the training
dataset to make it more balanced.

2.6. Model ensemble

In order to strengthen the generalization ability of the
model, we adopted the strategy of model ensemble. The en-
semble method is simple but effective. Given N well-trained
models, we collect 50 predicted elements from each model,
which result in 50N predicted elements for a single scene.
To remove duplicate elements among there predicted ele-
ments, we adopted non-maximum-suppression (NMS) on
the element points. Each predicted element has its own con-
fidence score and we tend to preserve those elements who
have higher confidence. We used chamfer distance as sim-
ilarity metric in NMS to remove duplicate elements. To be
more specific, We always choose the element with highest
confidence and remove these elements who has small cham-
fer distance to it. We repeat this process until no element is
deleted.

We tried two ways to set chamfer distance threshold,
static way and dynamic way. Static way means the thresh-
old is set to be a non-change value during the ensemble pro-
cess, which is simple to realize and is mainly used by us in
this competition. Dynamic way means the threshold would
be changed according the length of the two elements. We
believe that a bigger threshold will describe the similarity
better between two relatively longer elements. Based on
this belief, We designed the following calculation method
for threshold δ as shown in Eq. 5

δ = max(2,min(0.8,
L− 5

60− 5
× 1.2 + 0.8)) (5)

This simple ensemble method boosted the performance
of our model remarkably, which can be found in Sec.3.4.

mAP APP APD APB

MACH 1st 83.50 86.66 81.54 82.29
MapNeXt 2nd 73.65 68.94 76.66 75.34
MapSwin 3nd 73.39 70.37 75.08 74.73

Baseline 42.11 35.95 50.11 40.26

Table 1. Top 3 entries on the test leaderboard of online hd map
construction track of End-to-End Autonomous Driving workshop.
APP denotes AP of pedestrian crossing, APD of divider and
APB of boundary

3. Experiments
3.1. Dataset

The challenge dataset is built on top of the Argoverse2
dataset. Each segment is tens of seconds long. There are
seven images for each sample. The map elements have
three classes, including boundaries, dividers, and pedestrian
crossing.

3.2. Implementation Details

We adopt AdamW optimizer and cosine annealing
schedule. We use ResNet50 as the backbone for ablation
study. For test set, we use Swin-B as the backbone. For all
experiments except ablation study , λ is set to 2, α is set to
5, β is set to 5e−3 and γ is set to 2 during training. we set
the number of instance-level queries and point-level queries
to 100 and 20 respectively. And we set the size of each
BEV grid to 0.3m and stack 6 transformer decoder layers.
We train it with a total batch size of 16, a learning rate of
6e−4, learning rate multiplier of the backbone of 0.1, and
total epoch of 40.

3.3. Results

Our best results was achieved by applying static ensem-
ble method (mentioned in Sec. 2.6) on two well-trained
models, where the variable is the point number of each ele-
ment (20 and 40).

Table. 1 shows top 3 models on the test leaderboard
of online HD map construction track of End-to-End Au-
tonomous Driving workshop. The HDMapNet is the official
baseline model in the challenge. Our model has a huge per-
formance improvement compared with baseline. And we
ranked the 3nd place at last and has a tiny gap between the
2nd MapNeXt.

3.4. Ablation study

We study the effectiveness of all components of Map-
Swin. The key components include data augmentation
(DA), model ensemble (EN), point2line loss (p2l) and el-
ement number (e-num). As shown in Table. 2, we can find



p2l e-num DA EN mAP
× 50 × × 0.4971
× 100 × × 0.5025
✓ 50 × × 0.5124
✓ 50 ✓ × 0.5131
✓ 50 × ✓ 0.5250

Table 2. Effects of different components in MapSwin framework.
The components include data augmentation(DA), model ensem-
ble(EN), point2line loss(p2l) and element number(e-num).

that all applied components contribute to the final perfor-
mance.

4. Conclusion
In our model, we enhance the performance of MapTR-

based model by using more powerful backbone, adding ef-
fective supervision, applying effective ways of data aug-
mentation and model ensemble. At the same time, we
also utilize Spatial Cross-Attention layer to replace GKT
in MapTr to get better performance. Detailed experimental
results and ablation study also confirm the effectiveness of
our model. As a result, we achieved the overall third place
in this challenge and we will make more new attempts at
HD map construction.
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