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Abstract

We present Multi-task Learning with Localization Ambi-
guity Suppression for Occupancy Prediction (MiLO) as our
solution for camera-based 3D Occupancy Prediction Chal-
lenge at CVPR 2023. The proposed MiLO is unique in two
important aspects: (1) varying-depth multi-task learning to
incorporate perspective semantic prediction, depth estima-
tion, and occupancy prediction for more robust representa-
tions; and (2) localization ambiguity suppression to adap-
tively suppress low-confident localization in camera-based
system with respect to object class and distance. In addi-
tion, our method employs several techniques to boost the
performance. Our final model achieves 52.45 points mIoU
without using external data and wins 2nd place in CVPR
2023 3D Occupancy Prediction Challenge.

1. Introduction
3D scene understanding plays an important role in au-

tonomous driving. The 3D Occupancy Prediction Chal-
lenge (3DOPC) at CVPR 2023 provides the first 3D Oc-
cupancy Benchmark for Scene Perception in Autonomous
Driving. The task is to jointly estimate the occupancy state
and semantic label of every voxel in the scene from multi-
view images. Compared to LiDAR-based systems, camera-
based systems offer lower cost and higher resolution with
the ability to capture color information. However, camera-
based occupancy is generally challenging, requiring robust
representation and accurate localization.

Our solution is built upon the BEVDet4D-Occ [5] base-
line. Compared to the baseline, the proposed MiLO is
unique in two important aspects. First, MiLO incorporates
perspective semantic prediction, depth estimation, and oc-
cupancy prediction for more robust representations. Each
task is performed at a different network module to attain
varying-depth gradient flow and thus ease the deep network
training. In particular, the task of perspective semantic,

depth, and occupancy predictions are performed at the back-
bone, view transformer, and occupancy head, respectively.
Second, MiLO relies on localization ambiguity suppression
to refine the occupancy localization results. 3D localiza-
tion in camera-based systems is generally more challenging
compared to that in LiDAR-based systems since the pres-
ence of objects can be identified by the LiDAR. We pro-
pose a method that suppresses voxels associated with low-
confident localization based on network’s prediction score.
To further boost the performance, we employ several well-
known techniques including class-balanced losses, cus-
tomized architecture, atrous spatial pyramid pooling 3D,
high-resolution input, long-term temporal, stronger back-
bone, test-time augmentation, pseudo labeling, and model
ensemble. Our final model achieves 52.45 points mIoU
without using external data and wins 2nd place in CVPR
2023 3DOPC.

2. Baseline Method

Our baseline is BEVDet4D-Occ [5], which is an exten-
sion of BEVDet4D by replacing the detection head with the
occupancy head. BEVDet4D-Occ consists of 3 main com-
ponents, which are the image encoder, view transformer,
and occupancy encoder. Image encoder composes of a pre-
trained ResNet [4] and feature pyramid network (FPN) [7]
to obtain features from multi-view images. Noted that only
the finest features of FPN are used as the input of the next
component. A view transformer projects 2D image features
to 3D volumetric features guided by estimated depth [6,11].
Volume features from previous frames are spatially aligned
with the coordinate of the current timestamps and concate-
nated to fused temporal features. Concatenated features
are fed to the occupancy encoder [4, 7, 11] to directly pre-
dict occupancy. The cross-entropy and class-wise binary
cross-entropy are used as occupancy and depth losses, re-
spectively. We refer readers to [5] for further details of the
baseline.
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Figure 1. Overview of MiLO. Multi-view images are fed into an image encoder to extract 2D image features. Perspective semantic
supervision provides the image encoder a short path to the supervision signals. A view transformer [6] transforms 2D features to 3D
space guided by estimated depth. To attain temporal information, the volume features from current and previous frames are aligned and
concatenated. Then, an occupancy encoder predicts voxel-wise occupancy. Localization ambiguity suppression refines the occupancy
predictions to obtain final results.

3. Proposed Method
In this section, we provide a description of our ap-

proaches for training and inference, respectively. Figure 1
presents an overview of the proposed method.

3.1. Training

We tailor network architecture of the baseline and em-
ploy class-balanced loss function. We leverage additional
supervision obtained from sparse LiDAR and pseudo labels
to ensure consistent 2D-3D semantic information.

Image Encoder. Using stronger image feature extractors
is a simple way to improve prediction accuracy. We em-
ploy two modern architectures, which are InternImage-XL
[12] and Swin-L [9]. We use publicly available pre-trained
weights1 on ImageNet and COCO datasets.

Occupancy Encoder. We customize the network archi-
tecture for higher accuracy with small extra overhead. We
increase the number of 3D ResNet3D stages and corre-
sponding FPN3D levels from 3 to 4 and balance the number
of base channels.

Atrous Spatial Pyramid Pooling for 3D (ASPP-3D).
Occupancy prediction is a dense prediction task, which re-
quires the incorporation of large context. We extend ASPP

1https://github.com/microsoft/Swin-Transformer
and https://github.com/OpenGVLab/InternImage

[1] and propose ASPP-3D to probe upcoming 3D features
with filters at multiple sampling rates and fields-of-views.

Class-balanced Losses. The nuScenes dataset is heav-
ily imbalanced. For instance, the portions of common
classes (e.g., driveable space and free) are roughly
104× larger than those of rare classes (e.g., bicycle
and motorcycle). To mitigate this problem, we utilize
weighted cross-entropy, and dice loss to supervise the oc-
cupancy prediction. Following class balanced loss [2], the
weights of imbalanced classes are obtained using the num-
ber of voxels for each class as the number of samples with
the β = 0.9. To alleviate computation issues due to a large
number of voxel samples, we normalize the number of sam-
ples across different classes. Finally, the final multi-task
loss is the combination of weighted cross-entropy loss Lwce,
dice loss Ldice, perspective semantic loss Lsem, and depth
loss Ldepth with λ{... } being the loss weights:

Ltotal = λwceLwce+λdiceLdice+λsemLsem+λdepthLdepth (1)

Perspective Semantic Supervision. Since the network
consists of complex components in different domains (2D,
2D-to-3D, 3D) leading to potential optimization difficul-
ties. To cope with this problem, we propose varying-depth
multi-task learning where each task is performed at a dif-
ferent depth level of the network. In particular, perspective
semantic supervision is employed to additionally supervise

https://github.com/microsoft/Swin-Transformer
https://github.com/OpenGVLab/InternImage
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Figure 2. Perspective Semantic Supervision. The finest FPN fea-
tures are fed into two ResNet blocks followed by a predictor to
obtain 2D semantic maps. Semantic features right before the pre-
dictor is used to refine the FPN features.
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Figure 3. Localization ambiguity in pedestrian.

the backbone such that perspective semantic, depth, and oc-
cupancy predictions are performed at the backbone, view
transformer, and occupancy head respectively. The advan-
tages of this approach are two-fold: (1) it creates a short
path to supervision signal for each component, which is
shown to be effective in prior work [8, 13, 14], and (2) it
provides ensuing components prior for more accurate pre-
diction.

Regarding perspective semantic supervision, since
image-level semantic annotations are not available for
nuScenes dataset, we project LiDAR points to multi-view
images and employ LiDAR semantic annotations to con-
struct corresponding semantic images, as shown in Figure
2. Since LiDAR points are sparse, we create a mask to pro-
vide supervision signals to the image locations that the point
projection hits only.

High-Resolution Input. The baseline is trained with im-
age resolution of 704 × 256, we increase the resolution to
1600× 640 in our final model.

Long-Term Temporal. The baseline method uses 2
frames to extract temporal information. We increase the
number of frames to 5 for more long-term temporal.

Pseudo Labeling. We utilize the inference results as
pseudo labels showing confidence score higher than a
threshold of 0.9. To avoid over-fitting on pseudo data, we
also learn a pseudo camera mask on test data and filter out
unobserved locations via pseudo camera mask. Then, we
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Figure 4. Results on validation set with different object classes
and distances. Higher bin indices indicate more distant objects.

fine-tune the model with the combination of the pseudo and
training data for 1 epoch.

3.2. Inference

We employ ensembles of two models that rely on dif-
ferent image feature extractors. In this work, we propose
techniques for test time augmentation and suppression of
localization ambiguities.

Ensemble. To capture different modalities of image fea-
tures, we employ an ensemble of two backbone architec-
tures which are InternImage-XL and Swin-L.

Test-Time Augmentation. We propose test-time aug-
mentation on images and BEV features including image
vertical flipping, image multi-scale of [0.96, 1.0, 1.06], and
BEV flipping along the x and y axes. Due to resource con-
straints, we select randomly 6 augmentation configurations
for each testing sample.

Localization Ambiguity Suppression. Camera-based
approach for 3D scene understanding is highly challenging.
In LiDAR-based systems, one can physically determine the
presence of surrounding objects from particles detected. In
contrast, methods for camera-based systems require 3D ob-
ject localization in addition to object recognition. How-
ever, 3D localization from images is often ambiguous. Fig-
ure 3 shows that the localization quality of the prediction
for pedestrian is unsatisfactory in comparison with the
ground truth. We further analyze the prediction accuracy
with respect to different object classes and distances. Intu-
itively, distant and small objects are difficult to precisely lo-
calize. We divide the scenes into multiple spatial bins (6 in
our experiments) in BEV polar coordinates based on the dis-
tances from points to the ego car, and then evaluate per-class
IoU on each bin in Figure 4. As expected, the IoU drops
quickly as the distance increases in most of the classes. For
rare small classes such as bicycle and motorcycle,
the mIoU is almost 0 for distant objects (bin 6). To cope
with the localization ambiguity problem, we propose to
adaptively suppress voxels with low-confident localization
by assigning them to the background (i.e., free class). For
simplicity, we assume that the localization confidence cor-
relates with the network prediction score, which is widely



Table 1. Comparison between the competition baseline and our method on the test set.
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Competition BL 23.70 10.24 36.77 11.70 29.87 38.92 10.29 22.05 16.21 14.69 27.44 23.13 48.19 33.10 29.80 17.64 19.01 13.75
MiLO (ours) 52.45 27.80 56.28 42.62 50.27 61.01 35.41 47.97 38.90 40.29 56.66 47.03 86.96 57.48 63.64 62.53 63.00 53.74

Improvement 28.75 17.56 19.51 30.92 20.40 22.09 25.12 25.92 22.69 25.60 29.22 23.90 38.77 24.38 33.84 44.89 43.99 39.99

Table 2. Ablation studies on validation set using ResNet-50.

exp id Baseline Semantic Loss Arch ASPP High-Res Longterm Pseudo TTA Localization mIoU

1 ✓ 33.50
2 ✓ ✓ 34.92
3 ✓ ✓ ✓ 39.53
4 ✓ ✓ ✓ ✓ 40.49
5 ✓ ✓ ✓ ✓ ✓ 41.13
6 ✓ ✓ ✓ ✓ ✓ ✓ 42.71
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 43.95
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 45.05
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 46.02

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 46.76

used in other tasks such as object detection. During infer-
ence, we search for the optimal per-class per-bin confidence
score threshold on the validation set. If the confidence score
of a voxel is lower than the the threshold of corresponding
class and spatial bin, the voxel is re-assigned to free class.

4. Experiments

In this section, we explain dataset, implementation de-
tails, and ablation studies. Table 1 shows the final results.

Dataset and Evaluation Metric. The nuScenes dataset
consists of 700 scenes for training, 150 for validation, and
150 for testing. During training, two data modalities are
utilized in our method which are multi-view images and Li-
DAR points. Specifically, LiDAR coordinates and semantic
labels are used as extra supervision signals. During infer-
ence, only multi-view images serve as the input. No ex-
ternal data is utilized in our method. The standard mean
Intersection over Union (mIoU) is employed for evaluation.

Implementation Details. The final model utilizes
InternImage-XL [12] and Swin-L [9] as the backbones.
Multi-level features from the backbone are fused via
LSS-FPN [11]. Multi-task loss-weights are set to λwce = 1,
λdice = 0.3, λsem = 0.1, and λdepth = 0.05. The number of
contiguous frames to compute temporal information is set
to 5. The multi-view images are cropped into the size of
1600 × 640 pixels. The images are augmented by vertical
flipping, random scaling in the range of [0.94, 1.11], and

random rotation in the range of [-5.4◦, 5.4◦]. In addition,
BEV features are also augmented via flipping.

The network is trained with a batch size of 32 on 16
GPUs (two samples per GPU) for 36 epochs using AdamW
[10] optimizer. Learning rate and weight decay are set to
1e−4 and 1e−2, respectively. We adopt Exponential Mov-
ing Average (EMA) [3] for updating model weights.

Ablation Analysis. To quickly validate the efficacy of the
proposed components, we perform ablation analysis using
ResNet-50 [4] backbone with 24 training epochs. Table
2 reports the ablation results, where proposed components
are gradually integrated. The baseline is BEVDet4D with
ResNet-50 backbone. Components provide additive perfor-
mance improvements. Overall the proposed components at-
tain 13.26 points mIoU improvement over the baseline.

5. Conclusions

We proposed the MiLO that is ranked in second row in
3D Occupancy Prediction Challenge at CVPR2023, and re-
ported its recipe for training and inference. Specifically, we
introduced multi-task learning framework for classifying
and localizing semantic information on voxels. We also pro-
posed a post-processing method suppressing low-confident
localization based on network’s prediction score. Our final
model achieves 52.45 points mIoU, which is 28.75 points
higher than the competition baseline.
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