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Abstract

This technical report summarizes the winning solution
for the 3D Occupancy Prediction Challenge, which is held
in conjunction with the CVPR 2023 Workshop on End-
to-End Autonomous Driving and CVPR 23 Workshop on
Vision-Centric Autonomous Driving Workshop. Our pro-
posed solution FB-OCC builds upon FB-BEV, a cutting-
edge vision-based 3D object detection method. On the basis
of FB-BEV, we study novel designs and optimization tai-
lored to the 3D occupancy prediction task, including joint
depth-semantic pretraining, joint voxel-BEV representa-
tion, model scaling up, and effective post-processing strate-
gies. These designs and optimization result in a state-of-
the-art mIoU score of 54.19% on the nuScenes dataset and
ranks the 1st place in the challenge. Code will be released
at: https://github.com/NVlabs/FB-BEV .

1. Introduction
3D occupancy prediction, which refers to predicting the

occupancy status and semantic class of every voxel in a 3D
voxel space, is an important task in autonomous vehicle
(AV) perception. Predicting 3D occupancy is important to
the development of safe and robust self-driving systems by
providing rich information to the planning stack [6]. The
challenge track requires participants to developing occu-
pancy prediction algorithms that solely utilize camera input
during inference. In addition, the challenge permits the use
of open-source datasets and models, which facilitates the
exploration of data-driven algorithms and large-scale mod-
els. The impact of this challenge is significant by providing
a playground for the latest state-of-the-art 3D occupancy
prediction algorithms in real-world scenarios.

In the context of challenge, besides our efforts in model
structure design, we emphasize the importance of both
model scale and model pre-training techniques. This fo-
cus stems from several motivations. First, it should be
mentioned that there have been a number of state-of-the-
art BEV-based solutions. These solutions can be adapted to
3D occupancy prediction with certain modifications. How-
ever, there is still limited knowledge regarding the impact

of large-scale models and pre-training on the occupancy
prediction task. As will be reported in this work, the use
of large-scale models and pre-training techniques stands as
crucial factors contributing to our success.

2. Our Solution
In this section, we will present our solution in details

with the following aspects covered. Section 2.1 will elabo-
rate on the design of our model structure. Section 2.2 will
discuss the efforts in model pre-training and scaling up.
Finally, Section 2.3 will outline the post-processing tech-
niques employed in our study.

2.1. Model Structure Designs

Our solution, FB-OCC, builds upon a 3D object detec-
tion method termed FB-BEV. Here, we provide a brief intro-
duction to facilitate a better understanding of FB-OCC. The
central module of the camera-only 3D perception model is
the view transformation module. This module encompasses
two prominent view transformations: forward projection
(represented by List-Splat-Shoot [16]) and backward pro-
jection (represented by BEVFormer [12]). FB-BEV pro-
vides a unified design that leverages both methods, promot-
ing the benefits from each method with improved perception
results while overcoming their limitations. In the case of
FB-OCC, we use forward projection to generate the initial
3D voxel representation. We then condense the 3D voxel
representations into a flattened BEV feature map. The BEV
feature map is treated as queries within the BEV space and
attends the image encoder features to acquire dense geom-
etry information. The fusion features of the 3D voxel rep-
resentation and the optimized BEV representations are then
fed into the subsequent task head.

In the forward projection module, we adhere to the prin-
ciples of LSS [16] to account for the uncertainty in the
depth estimation of each pixel. This allows us to project
the image features into the 3D space based on their corre-
sponding depth values. In contrast to LSS, which models
BEV features, we directly model 3D voxel representations
to capture more detailed information in the 3D space. Ad-
ditionally, we adopt the approach of BEVDepth [11] to uti-
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lize point clouds in generating accurate depth ground truth,
which helps supervise the depth prediction of our model for
improved accuracy. LSS tends to produce relatively sparse
3D representations. To tackle this issue, we incorporate a
backward projection method to optimize these sparse 3D
representations. Considering the computational burden, we
employ BEV representation instead of 3D voxel represen-
tation at this stage. The backward projection method draws
inspiration from BEVFormer [12]. However, unlike BEV-
Former, which employs randomly initialized parameters as
BEV queries, we compress the obtained 3D voxel repre-
sentation into a BEV representation, thereby incorporating
stronger semantic priors. Furthermore, our backward pro-
jection method leverages the depth distribution during the
projection phase, enabling more precise modeling of pro-
jection relationships.

Following the acquisition of the 3D voxel representa-
tions and optimized BEV representation, we combine them
through the process of expanding the BEV features, result-
ing in the final 3D voxel representations. The voxel encoder
and the occupancy prediction head, as depicted in Figure 1
and Figure 2, are outlined below.

To train the model, we use a distance-aware Focal loss
function Lfl inspired by M2BEV [21], Dice loss Ldl,
affinity loss Lgeo

scal and Lsem
scal from MonoScene [2], lovasz-

softmax loss Lls from OpenOccupancy [20]. In addition,
we also need a depth supervision loss Ld and a 2D seman-
tic loss Ls, which will be introduced in the next section.

2.2. Scaling up and Pretraining

Scaling the model size has traditionally been a conve-
nient approach to improving model accuracy. However, in
the field of 3D vision-only perception, researchers have dis-
covered that employing a more powerful 2D backbone of-
ten leads to overfitting [7]. For instance, on the nuScenes
3D object detection task, the largest backbone, such as VIT-
L [4] with approximately 300M parameters, and commonly
used backbones like ConvNext-B [13] and VoVNet-99 [10]
with around 100M parameters, tend to encounter this is-
sue. To address this challenge, we explore the utilization of
the 1B-parameter backbone, InternImage-H [19], for multi-
camera 3D perception tasks. However, directly applying
this backbone would result in severe overfitting due to the
limited number of samples available for training, specifi-
cally the 40K samples in the nuScenes dataset [1]. To over-
come this limitation, we leverage the opportunity provided
by this competition, which allows participants to utilize ad-
ditional public data. By augmenting our data resources, we
can train our large-scale model more effectively. Building
upon the open-source InternImage-H checkpoint, we con-
duct model training on the Object365 dataset [17], which is
a vast 2D object detection dataset comprising 2 million im-
ages. This pre-training on large-scale 2D detection tasks en-

hances the model’s semantic perception capabilities. How-
ever, there still exists a certain domain gap when applying
the pre-trained model to downstream 3D perception tasks.
Therefore, we further perform targeted pre-training on the
model specifically for 3D perception tasks. An effective ap-
proach for pre-training is to enhance the model’s geometric
awareness through depth estimation tasks. Consequently,
we conduct extensive pre-training on the nuScenes dataset,
primarily focusing on depth estimation. It is worth noting
that depth pre-training lacks semantic-level supervision. To
mitigate the risk of the model becoming excessively biased
towards depth information, potentially leading to the loss
of semantic priors (especially given the large-scale nature
of the model, which is prone to overfitting), we simultane-
ously aim to predict the 2D semantic segmentation labels
alongside the depth prediction task, as shown in Figure 3.

However, nuScenes does not provide semantic segmen-
tation labels for 2D images. To address this issue, we em-
ploy the popular Segment Anything Model (SAM) [9] for
automatic labeling. For thing categories with bounding box
annotations provided by nuScenes, we utilize box prompts
to generate high-quality semantic masks for each object.
Unfortunately, for stuff categories such as road surfaces
or buildings, bounding box annotations are not available.
Nonetheless, nuScenes offers corresponding point cloud se-
mantic segmentation labels for these categories.

To generate semantic masks for stuff categories, we
project the LiDAR points belonging to these categories onto
the image. For each category, we randomly select three
points as point prompts to generate the corresponding se-
mantic masks. The quality of the produced stuff masks
is satisfactory. With the 2D image semantic mask labels
and the ground truth depth maps, we train the model us-
ing a joint depth estimation task and semantic segmentation
task. This pre-training task closely aligns with the final oc-
cupancy prediction task, enabling the direct generation of
3D occupancy results using depth values and semantic la-
bels. The pre-trained model serves as an improved starting
point for the subsequent training of the occupancy predic-
tion task.

2.3. Post-Processing

2.3.1 Test-Time Augmentation

During the inference phase, we employ several techniques
to improve the prediction accuracy. Firstly, we horizontally
flip the input image and horizontally and vertically flip the
3D space, resulting in a total of eight prediction results for
the current frame. The final prediction result is obtained by
calculating the mean average of all these results. Addition-
ally, we utilize a temporal Test-Time Augmentation (TTA)
strategy. We observed that the accuracy of occupancy pre-
diction significantly deteriorates with distance. To mitigate
this issue, for static voxels, we can leverage the predicted
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Figure 1: Overall architecture of FB-OCC. The F-VTM is based on the forward projection strategy (LSS), and the
B-VTM is based on the backward projection strategy (BEVFormer).
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Figure 2: The architecture of the occupancy prediction
head of FB-OCC.
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Figure 3: The joint depth and semantic pretraining.

voxels that are close to the ego car in previous frames to re-
place the voxels in the same location of the current frame,
where the distance to the ego car is greater. By incorporat-
ing these strategies, we aim to enhance the overall predic-
tion accuracy of the model.

2.3.2 Ensemble

For our ensemble strategy, we perform a weighted sum of
all independent results. The weight of each voxel is deter-
mined by two factors. The first factor is the model weight,
which is related to the overall mIoU of each result. The
second factor is the specific category weight, which is re-
lated to the IoU of this voxel’s category. We use NNI [14]
to search the different weight values automatically.

3. Experiments
3.1. Datasets and Metrics

Dataset The occupancy dataset is built based on the exist-
ing nuScenes dataset [1, 18]. For each frame, they provide
occupancy annotations within the range of [-40m, -40m, -
1m, 40m, 40m, 5.4m], and the resolution of each voxel is
0.4m. The dataset contains 18 classes, where one indicates
a free voxel that is occupied by nothing. The dataset also
provides the camera mask to indicate whether the voxel is
visible from any cameras.

Metrics For this challenge, we mainly evaluate our mod-
els based on mIoU, which can be formulated as follows:

mIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc
, (1)

where TPc, FPc, and FBc correspond to the number of
true positive, false positive, and false negative predictions
for class c, and C is the total number of classes.

3.2. Implementation Details

Training Strategies. For training large-scale models, we
use a batch size of 32 on 32 NVIDIA A100 GPUs, AdamW
optimizer with a learning rate of 1 × 10−4 and a weight-
decay of 0.05. The learning rate of the backbone is 10 times
smaller. We train our models around 50 epochs for occu-
pancy tasks. The temporal windows used by every model
are determined based on the GPU memory. For the Intern-H
backbone, we use 6 previous frames. When GPU memory
is sufficient, we use up to 16 historical frames. Following
SOLOFusion [15], we use online temporal sequences dur-
ing training which is much more efficient.

Network Details For large-scale models, the image fea-
tures from the backbone are downsampled with a stride of
16. The input image scale is 640×1600. We use commonly
used data augmentation strategies, including flip, and rota-
tion on both image and 3D space. The depth net predicts
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MonoScene [2] C 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65 6.06
BEVDet [8] C 2.09 15.29 0.0 4.18 12.97 1.35 0.0 0.43 0.13 6.59 6.66 52.72 19.04 26.45 21.78 14.51 15.26 11.73
BEVFormer [12] C 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.0 28.06 20.04 17.69 26.88
CTF-Occ [18] C 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.0 28.53

Version A C 0.04 37.15 16.81 34.17 38.22 13.41 16.97 19.69 18.94 11.65 21.94 55.94 26.98 29.65 26.92 10.24 14.33 23.12
Version B C 0.03 40.94 21.16 39.22 40.75 20.57 23.85 23.6 24.95 16.63 26.36 59.42 27.57 31.39 29.03 16.69 18.42 27.09
Version C C 0.02 45.18 25.26 44.55 47.38 22.63 26.24 26.92 27.91 26.4 32.1 76.97 37.2 44.84 47.81 37.0 32.64 35.36
Version D C 12.17 44.83 25.73 42.61 47.97 23.16 25.17 25.77 26.72 31.31 34.89 78.83 41.42 49.06 52.22 39.07 34.61 37.39
Version E C 13.57 44.74 27.01 45.41 49.1 25.15 26.33 27.86 27.79 32.28 36.75 80.07 42.76 51.18 55.13 42.19 37.53 39.11
Version F C 13.66 45.88 28.26 44.91 49.78 26.21 28.84 28.27 27.89 32.75 37.56 81.2 43.46 52.13 56.35 42.79 38.1 39.89
Version G C 14.41 45.77 29.19 45.29 50.53 27.86 29.01 28.15 28.61 32.89 37.86 81.76 45.52 53.99 58.69 43.49 38.75 40.69
Version H C 14.30 49.71 30.0 46.62 51.54 29.3 29.13 29.35 30.48 34.97 39.36 83.07 47.16 55.62 59.88 44.89 39.58 42.06

Table 1: 3D occupancy prediction performance of different settings on the Occ3D-nuScenes dataset [18].
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Version H 67.8M 14.30 49.71 30.0 46.62 51.54 29.3 29.13 29.35 30.48 34.97 39.36 83.07 47.16 55.62 59.88 44.89 39.58 42.06
Version I 130.8M 14.26 57.02 38.34 57.69 62.12 34.35 39.43 38.82 39.42 42.91 50.02 86.04 50.24 60.06 62.54 52.36 45.68 48.90
Version J 428.8M 16.74 55.33 39.77 58.94 61.79 32.04 42.63 40.51 39.06 43.72 51.33 87.34 53.77 62.63 66.06 56.63 49.74 50.47
Version K 1200.0M 28.28 56.70 44.35 51.37 61.81 35.12 47.38 41.56 39.88 57.96 48.39 86.66 56.97 64.66 61.23 62.78 52.35 52.79

Table 2: Results of models in different scales.

80 discrete depth categories covering the depth from 2m
to 42m. The resolution of generated 3D voxel features is
200 × 200 × 16. The backward projection module uses 1
layer since the input BEV queries already contain meaning-
ful information. During the training phase, we ignore the
invisible voxels from cameras.

3.3. Ablations

Training large-scale models requires huge computing re-
sources. In our exploration phase, we verify the effect of
different methods on a smaller model scale. For this smaller
model, the input scale is 256 × 704, and the resolution is
100 × 100 × 8 and the image backbone is ResNet-50 [5].
We list the milestones of our exploration in Table. 1. Ver-
sion A is our naive baseline. In Version B, we use depth
supervision following BEVDepth. For Version C, we ig-
nore the invisible voxels from cameras during the training
phase. Version D model fixed several serious bugs of Ver-
sion C, especially for the abnormal IoU of other category.
For Version E, we used temporal information from the pre-
vious 16 frames. We leverage the joint depth and semantic
pretraining in Version F. For Version G, we optimized the
loss function by adding Dice loss and using 3D transforma-

tion to align voxel features from different timesteps. The
results of Version H is the test-time augmentation results of
Version G.

3.4. Scaling Up

After exploring the basic design of FB-OCC, we scale up
the model size by using larger backbones and image input
size, as shown in Table 2. Compared to Version H, version I
uses VoVnet-99 backbone and other modifications, includ-
ing using 960× 1760 image input and a voxel resolution of
0.4m. Compared to Version I, Version J leverages a ViT-L
backbone and ViT-adapter [3]. For our most powerful Ver-
sion K, we scale up the model to over 1 billion parameters
with the InternImage-H backbone.

3.5. Ensemble

In our final submission, we employed our ensemble strat-
egy with seven models to improve accuracy. The main
difference between different models is the use of differ-
ent backbones. By combining the results of all the models
through ensemble techniques, we were able to achieve our
best result on the test set with a mIoU score of 54.19%.
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