
GameFormer Planner: A Learning-enabled Interactive Prediction and Planning
Framework for Autonomous Vehicles

Zhiyu Huang, Haochen Liu, Xiaoyu Mo, Chen Lyu
Nanyang Technological University, Singapore
zhiyu001@e.ntu.edu.sg, lyuchen@ntu.edu.sg

Abstract

Decision-making is a fundamental yet challenging task
for autonomous vehicles, as it requires accurate predic-
tions of other traffic participants and, above all, safe and
interactive plans for the ego vehicle. This study intro-
duces the GameFormer planner, a planning framework
that builds upon the GameFormer model. The framework
consists of four key steps: feature processing, path plan-
ning, model query, and trajectory refinement. At the heart
of our planning framework lies the GameFormer model,
which is a Transformer-based neural network specifically
designed for interactive prediction and planning. It gen-
erates an initial plan for the ego vehicle and predicts the
trajectories of surrounding agents through iterative decod-
ing refinements. Comprehensive evaluations conducted on
the nuPlan benchmark demonstrate the competitive per-
formance of the proposed planning framework, validating
its effectiveness in both open-loop and closed-loop tests.
The code is available at https://github.com/MCZhi/
GameFormer-Planner/.

1. Introduction

One of the critical challenges faced by autonomous vehi-
cles (AVs) is the ability to make informed decisions in com-
plex traffic scenarios within real-world environments. Ef-
fective decision-making, especially in situations involving
interactions with other agents, relies on a comprehensive
understanding of their intentions and accurate prediction of
their future movements. To address this, numerous studies
have leveraged machine learning models [5, 6, 8] to tackle
the prediction problem. However, focusing solely on pre-
diction accuracy is insufficient to guarantee optimal plan-
ning performance [4], given the intricate interconnections
between the actions of the ego vehicle and other agents.
Therefore, it becomes crucial to develop joint planning and
prediction methods [2,3] capable of reasoning about the in-
teractions between agents and the ego vehicle. Such meth-

ods enable the generation of joint and coordinated deci-
sions, enhancing the interactivity of the planning processes.

In this study, we present an extension of our previ-
ous work on interactive prediction and planning. Building
upon the success of the GameFormer model [2], which has
demonstrated state-of-the-art performance in the interaction
prediction task, we introduce the GameFormer planner as
a comprehensive planning framework. The planning pro-
cess comprises the following sequential steps: 1) feature
processing: relevant input data from the observation buffer
and map undergoes preprocessing to extract pertinent fea-
tures for the model; 2) path planning: potential reference
paths for the ego vehicle are computed and the optimal
path is selected; 3) model query: the GameFormer model
is queried to generate an initial plan for the ego vehicle and
predict the trajectories of surrounding agents; and 4) trajec-
tory refinement: a nonlinear optimizer is employed to refine
the ego vehicle’s initial trajectory and produce the final plan.

2. Method
2.1. Planning Framework

The overall planning framework is illustrated in Figure 1,
which consists of four key steps. Firstly, feature preprocess-
ing involves extracting historical trajectories of surrounding
agents from the simulation buffer and obtaining vectorized
map polylines from the map API. Next, path planning uti-
lizes a state lattice planner to sample multiple waypoints
along the route centerlines, connecting the ego vehicle’s
current position and target waypoints using Bezier curves.
An optimal path is then selected based on a cost function. In
the model query step, the GameFormer model is employed
to generate an initial plan for the ego vehicle based on envi-
ronmental inputs and to predict trajectories for surrounding
agents. Lastly, trajectory refinement employs a nonlinear
optimizer to refine the initial plan, considering factors such
as maintaining target speed, minimizing position error, jerk,
and acceleration, as well as ensuring collision avoidance.
The GameFormer model is trained on the nuPlan dataset,
and the planning framework is evaluated using the accom-

Verified as the Innovation Award in the nuPlan Planning Challenge by the Organizing Committee.

https://github.com/MCZhi/GameFormer-Planner/
https://github.com/MCZhi/GameFormer-Planner/


nuPlan Simulation Platform

Feature processing

Path Planning

Model Query

Trajectory Refinement

Route Blocks & Ego State

Obstacles & Traffic Lights

Agent History & Vector Set Map

Reference 

path

Neighboring agents

Map elements

Initial plan &

Occupancy

Observation 

buffer

Map API

Planned 

Trajectory

𝑢1:𝑇
𝑖 = 𝑎𝑟𝑔min

𝑢1:𝑇


𝑡

𝑤𝑖𝐶𝑖

subject to 𝑥1 = 𝑥𝑖𝑛𝑖𝑡
𝑥𝑡+1 = 𝑓𝜃 𝑢𝑡

Simulation 

Engine

Metrics 

Engine

Figure 1. An overview of the GameFormer planner. The framework comprises four key steps: feature processing, path planning, model
querying, and trajectory refinement. These steps extract information from the simulation platform and generate planned trajectories.

panying simulation platform and benchmark [1]. Further
details of each step in the framework will be provided in the
following subsections.

2.2. Feature Processing

The GameFormer model requires two distinct types of
feature inputs: the historical trajectories of agents and a
vectorized map. In contrast to the original configuration
in GameFormer, where we find possible routes and cross-
walks for individual agents, we now employ a global vector
set map structure that encompasses various map elements in
close proximity to the ego vehicle. This map information is
shared among all agents.

Regarding the surrounding agents, we find the N = 20
agents that are closest to the ego vehicle at the current
timestep, encompassing various agent types (i.e., vehicles,
pedestrians, and cyclists). To capture their historical behav-
ior, we sample the timesteps from the observation buffer at
a frequency of 10 Hz, covering the past 2 seconds along
with the current timestep, resulting in a total of Th = 21
timesteps. Consequently, we obtain a feature tensor that
represents the historical information of neighboring agents,
with a shape of N × Th × 11. The features encompass 11
dimensions, including diverse attributes of the agents such
as their x and y coordinates, heading angle h, velocities vx
and vy , yaw rate γ, size (length and width), and one-hot
encoding of agent type. Furthermore, we extract the histor-
ical states of the ego vehicle and organize them into a tensor
with a shape of 1×Th×7. This tensor incorporates features
of the ego vehicle’s pose (x, y, h), velocities (vx, vy), and
accelerations (ax, ay). It is important to note that all posi-
tional and velocity attributes are normalized relative to the

ego vehicle’s current state, and any vacant positions within
the tensors are padded with zeros.

For the vectorized map, we extract three specific types
of map elements (i.e., lanes, crosswalks, and route lanes)
from the map API. To mitigate potential timeout errors on
the evaluation server, we set the search radius to r = 10
meters. However, we highly recommend utilizing a larger
radius of r ≥ 50 meters to achieve better performance. The
map lane tensor has a shape of 40 × 50 × 7, allowing for
a maximum of 40 lanes, each consisting of 50 centerline
waypoints. The features within the map lane tensor encom-
pass 7 dimensions, including the position (x, y, h) of each
waypoint and the one-hot encoding of the traffic light state.
In cases where there are insufficient elements, we pad the
positions with zeros. Similarly, the map crosswalk tensor
has a shape of 5×30×3, and the map route lane tensor has
a shape of 10 × 50 × 3. The positional attributes of these
tensors are normalized relative to the ego vehicle’s state.

2.3. Path Planning

To ensure closed-loop planning performance, it is neces-
sary to have a reference path that guides and constrains the
planned trajectories within the lane while adhering to traffic
regulations. The path planning process unfolds as follows.

1) Finding possible route plans: Initially, candidate route
edges around the current position of the ego vehicle are
identified, followed by the utilization of a depth-first search
algorithm to find candidate route plans within the desig-
nated route blocks. Once the route plans are obtained, the
corresponding centerlines are extracted, resulting in multi-
ple path options. A valid path typically extends approxi-
mately 120 to 150 meters, and any route paths with lengths



below a predefined threshold are disregarded.
2) Generating candidate paths: We employ a state lattice

planner to generate the candidate paths. Initially, multiple
waypoints are sampled along each route path at fixed inter-
vals of [5, 10, 15, 20] meters, with the origin starting from
the position closest to the ego vehicle. These target way-
points on all route paths collectively form a state lattice.
Subsequently, each target state is connected to the ego ve-
hicle’s current position using Bezier curves, resulting in a
smooth path. The remaining segment of the candidate path
follows the centerline of the target route path. By applying
this process to all target states on the lattice, multiple can-
didate paths can be generated. The path generation process
is illustrated in Figure 2.

Ego Vehicle

State Lattice

Candidate Path

Surrounding 

Object

Route 

centerline

Figure 2. Illustration of path generation process

3) Selecting the optimal path: After generating the can-
didate paths, a selection process is employed to determine
the optimal path. Several criteria are taken into account,
such as path curvature, presence of obstacles, lane changes,
crossing road boundaries, and reaching the target lane. A
cost function is utilized to compute the cost associated with
each path, and the path with the lowest cost is selected.
More specifically, the cost of a path ζ is determined by a
weighted sum of different features: c(ζ) =

∑
i wifi(ζ).

These features encompass the maximum curvature of the
path (f1), the distance of the path to the ego vehicle (f2),
a binary indicator representing whether the path intersects
with any static obstacle (f3), a binary indicator indicating
whether the path intersects with any road boundaries (f4),
and a binary indicator signifying the allowance to change
to the target lane (the longest route path) (f5). The weights
assigned to these features are as follows: w1 = 0.1, w2 =
1, w3 = 10, w4 = 2, w5 = −5.

4) Post-processing: After selecting the optimal path,
post-processing steps are performed to refine and finalize
the reference path. We utilize cubic spline interpolation
to smooth the path and calculate the curvature of the path.
Furthermore, we adjust the coordinates and headings of the
path to be relative to the ego vehicle’s position. The way-
points along the path are uniformly spaced at intervals of
0.1 meters, with a maximum path length constraint of 120
meters. Subsequently, we annotate the target speed based
on the speed limit and path curvature, as well as the oc-

cupancy resulting from traffic lights encountered along the
path. Finally, we obtain a tensor of the reference path with a
shape of 1200× 6, encompassing the waypoint coordinates
(x, y), heading, curvature, target speed, and occupancy.

2.4. Model Query

To ensure efficient inference speed, we utilize a compact
version of the GameFormer model [2]. This model is com-
posed of 3 encoding layers and 3 decoding layers, which
include 1 initial decoding layer and 2 interaction decod-
ing layers. Additionally, we introduce an extra decoding
layer following the last interaction decoding layer to gen-
erate the ego vehicle’s plan. The decoding layer is imple-
mented as a Transformer module, where the query is de-
rived from the max-pooled latent feature of the ego vehicle
along the modality dimension, and the key and value are ob-
tained by concatenating the latent feature with the encoded
route lanes. The output of this layer is a tensor with a shape
of 1 × 80 × 2, representing the ego plan with future x and
y coordinates. The ego plan is then projected onto the ref-
erence path as an initialization of the refine planner.

The output of the GameFormer model consists of multi-
modal trajectories for the surrounding N = 20 agents,
represented by tensors of shape N × 6 × 80 × 2. The
model also provides probabilities associated with the dif-
ferent modes of each agent’s trajectory, resulting in tensors
of shape N×6. For each agent, we select the trajectory with
the highest probability and project it onto the reference path
using the Frenet transformation [9] to calculate the spatial-
temporal occupancy. Specifically, we initialize the occu-
pancy grid O as a zero tensor of shape 80 × 120 × 1. For
any agent at any given timestep, if the projected lateral co-
ordinate d ≤ 0.5(We +Wa) + 0.5, where We is the width
of the ego vehicle and Wa is the width of the agent, and
the projected longitudinal coordinate 0 < s < 120, we an-
notate the path occupancy for that timestep. The occupied
area along the path is defined as [s− 0.5La+3, s+0.5La],
where La is the length of the agent. The final occupancy
grid is obtained by combining the traffic light occupancy
using the maximum operation. An example illustrating the
derivation of the occupancy grid is shown in Figure 3.

Reference Path
Agent 1

Agent 2

Occupancy = 1 t = 0~8s
Occupancy = 0

Occupancy = 1 t = 4~6sPredicted trajectory

Example Occupancy Grid

Length

Time

Predicted trajectory

Figure 3. Illustration of occupancy grid calculation



2.5. Trajectory Refinement

ML-based policies often face challenges related to dis-
tributional shifts and causal confusion, which can result in
poor performance in closed-loop tests. To mitigate these
issues, we employ a nonlinear optimizer [7] as a refine mo-
tion planner within our framework. The refine planner plays
a crucial role in explicitly regulating the comfort and speed
of the trajectory while ensuring collision avoidance. Specif-
ically, the refine planner optimizes the speed along the ref-
erence path ṡt, utilizing the following objective function:

ṡ∗t = argmin
ṡt

∑
i

∑
t

ωici(ṡt), (1)

where ωi is the weight assigned to each individual cost term
ci, and t denotes the time index.

The individual cost terms, ci(ṡt), capture various factors
such as comfort, safety, and travel efficiency. We begin by
considering the speed cost:

cspeed =∥ ṡt − vtarget(ŝ) ∥2, (2)
where vtarget is the target speed along the reference path, and
ŝ is the initial plan provided by the model. Additionally, we
introduce a soft constraint to prevent negative speeds:

cforward =

{
0 if ṡt ≥ 0,

∥ ṡt ∥2 otherwise.
(3)

Next, we consider ride comfort factors, including accel-
eration and jerk:

cacc =∥ s̈t ∥2, (4)
cjerk =∥ ...

s t ∥2 . (5)

To ensure comfort, we introduce a soft constraint on the
acceleration, which should be within a specified range:

ccomfort =

{
0 if − 4.05 ≤ s̈t ≤ 2.4,

∥ s̈t ∥2 otherwise.
(6)

We also include a cost term to encourage the final step of
the refined trajectory to be close to the initial plan ŝ:

cinit =

{
0 if ∥ sTf

− ŝTf
∥≤ 3,

∥ sTf
− ŝTf

∥2 otherwise,
(7)

where s is the coordinate on the reference path obtained by
integrating the speed ṡt, and Tf is the planning horizon.

Finally, we address collision avoidance by ensuring that
the vehicle’s position does not exceed occupied areas.

ccollision =

{
∥ st + Le −Ot ∥2 if Ot > ŝt, st + Le > Ot,

0 otherwise,
(8)

where Le is the length of the ego vehicle, and Ot is the
occupancy grid at timestep t. The condition Ot > ŝt in-
dicates that we only consider the occupancy grid ahead of

the position in the initial plan. To improve runtime, we fo-
cus on specific timesteps at the beginning of the trajectory,
t = [0.2, 0.4, 0.7, 1.0, 1.5, 2.0, 2.5, 3] s.

The optimization problem is solved using the Gauss-
Newton method with the following settings: a maximum
iteration of 10, a step size of 0.5, and a relative error tol-
erance of 1e-3. The cost terms are assigned the following
weights: ωspeed = 0.3, ωacc = 0.1, ωjerk = 1.0, ωinit = 3.0,
and the soft constraints are assigned with a weight of 10.
While assuming the lateral movement is dt = 0, for future
work aiming to achieve a more flexible plan, we will con-
sider optimizing d or jointly optimizing both s and d. Once
the refined trajectory s∗ is obtained, we project the coordi-
nates back to Cartesian space, resulting in the final planned
trajectory represented as a sequence of (x, y, h).

2.6. Model Training

The GameFormer model is trained using the train and
validation partitions of the nuPlan dataset, which have un-
dergone data preprocessing and contain approximately 2.8
million data points. We employ GMM loss on the best joint
modal for predicting agent behaviors and smooth L1 loss
for the ego plan. In consideration of speed, the original col-
lision loss is not utilized. The training process is performed
on 4 NVIDIA Tesla A100 GPUs, with a batch size of 256
on each GPU. The AdamW optimizer is employed with an
initial learning rate of 1e-4 and weight decay of 1e-2. The
learning rate is decreased by a factor of 0.5 every 3 epochs,
starting from the 10th epoch. The training is carried out for
a total of 30 epochs.

3. Results
The evaluation of our planning framework is conducted

on the nuPlan benchmark, including three tasks: open-
loop (OL) planning, closed-loop (CL) planning with non-
reactive agents, and closed-loop planning with reactive
agents. A variety of metrics are employed to calculate
the overall score for each task. Table 1 presents the re-
sults of our planning framework compared to other com-
peting methods. The results demonstrate the effectiveness
and capability of our planning framework in achieving high-
quality planning results across the evaluated tasks.

Table 1. Testing results on the nuPlan planning benchmark

Method OL CL non-reactive CL reactive
hoplan 0.87 0.89 0.88
pegasus multi path 0.88 0.82 0.85
GameFormer (Ours) 0.84 0.81 0.84
ltp-planner 0.88 0.79 0.80
Forecast MAE 0.91 0.76 0.73
UrbanDriver 0.86 0.68 0.70
IDMPlanner 0.29 0.72 0.75



References
[1] Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong,

Eric Wolff, Alex Lang, Luke Fletcher, Oscar Beijbom, and
Sammy Omari. nuplan: A closed-loop ml-based planning
benchmark for autonomous vehicles. In CVPR ADP3 work-
shop, 2021. 2

[2] Zhiyu Huang, Haochen Liu, and Chen Lv. Gameformer:
Game-theoretic modeling and learning of transformer-based
interactive prediction and planning for autonomous driving.
arXiv preprint arXiv:2303.05760, 2023. 1, 3

[3] Zhiyu Huang, Haochen Liu, Jingda Wu, and Chen Lv. Differ-
entiable integrated motion prediction and planning with learn-
able cost function for autonomous driving. arXiv preprint
arXiv:2207.10422, 2022. 1

[4] Zhiyu Huang, Haochen Liu, Jingda Wu, and Chen Lv. Condi-
tional predictive behavior planning with inverse reinforcement
learning for human-like autonomous driving. IEEE Transac-
tions on Intelligent Transportation Systems, 2023. 1

[5] Zhiyu Huang, Xiaoyu Mo, and Chen Lv. Multi-modal mo-
tion prediction with transformer-based neural network for
autonomous driving. In 2022 International Conference on
Robotics and Automation (ICRA), pages 2605–2611. IEEE,
2022. 1

[6] Xiaoyu Mo, Zhiyu Huang, Yang Xing, and Chen Lv. Multi-
agent trajectory prediction with heterogeneous edge-enhanced
graph attention network. IEEE Transactions on Intelligent
Transportation Systems, 2022. 1

[7] Luis Pineda, Taosha Fan, Maurizio Monge, Shobha
Venkataraman, Paloma Sodhi, Ricky TQ Chen, Joseph Ortiz,
Daniel DeTone, Austin Wang, Stuart Anderson, et al. The-
seus: A library for differentiable nonlinear optimization. Ad-
vances in Neural Information Processing Systems, 35:3801–
3818, 2022. 4

[8] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Mo-
tion transformer with global intention localization and local
movement refinement. In Advances in Neural Information
Processing Systems, 2022. 1

[9] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebas-
tian Thrun. Optimal trajectory generation for dynamic street
scenarios in a frenét frame. In 2010 IEEE International Con-
ference on Robotics and Automation, pages 987–993, 2010.
3


	. Introduction
	. Method
	. Planning Framework
	. Feature Processing
	. Path Planning
	. Model Query
	. Trajectory Refinement
	. Model Training

	. Results

