Open

Planning-oriented Autonomous Driving

Yihan Hu^{*} Jiazhi Yang^{*} Li Chen^{*+} Keyu Li^{*}

Chonghao Sima Xizhou Zhu Siqi Chai Senyao Du Tianwei Lin Wenhai Wang Lewei Lu Xiaosong Jia Qiang Liu Jifeng Dai Yu Qiao Hongyang Li⁺ *equal contribution *project lead

Poster: THU-AM-131

arXiv: https://arxiv.org/abs/2212.10156

Yihan

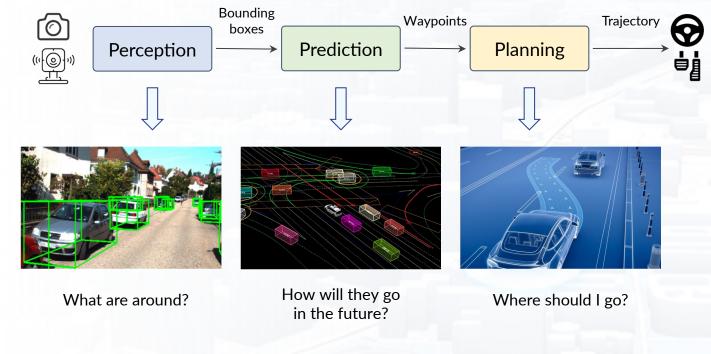
Li

Keyu Hongyang

人丁智 能 实 Shanghai Artificial Intelligence Laboratory

Shanghai Al Laboratory | 上海人工智能实验室

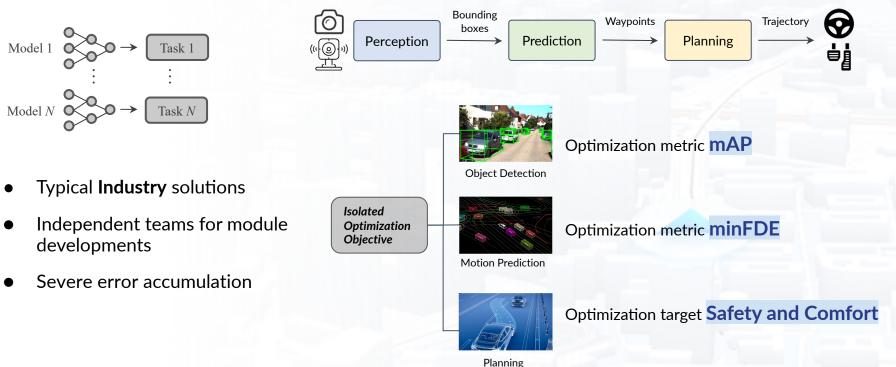
Planning-oriented Autonomous Driving


Background and Motivation

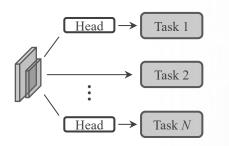
Shanghai AI Laboratory | 上海人工智能实验室

Background - Autonomous Driving (AD) Systems

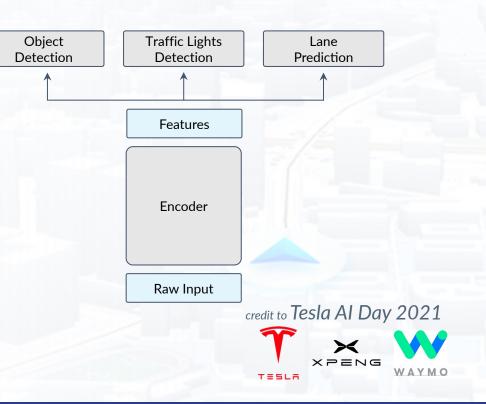
Various weathers, illuminations, and scenarios


Shanghai AI Laboratory | 上海人工智能实验室

(a) Standalone Models

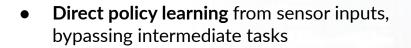

 \checkmark

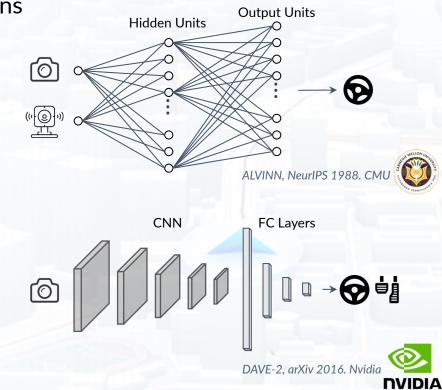
Χ.



Open SriveLab

(b) Multi-task Framework

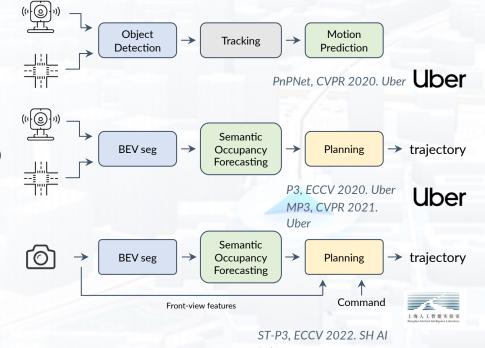

- Shared feature for multiple tasks
- Easily extended to more tasks, Compute-efficient
- ★ Lack of tasks' coordination



Planner

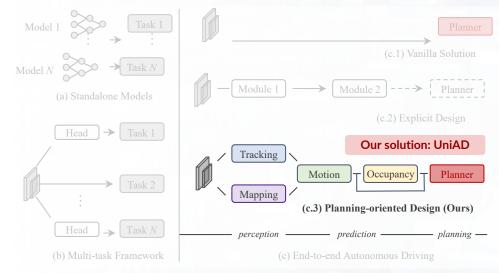
(c.1) End-to-end Framework - Vanilla Solutions

- Simple design with good performance in the simulator
- X Deficient in interpretability



(c.2) End-to-end Framework - Explicit / Interpretable Design

Module 1 → Module 2 → Planner


- Introducing **intermediate tasks** to assist planning
- Better interpretability (e.g. Bird's-eye-view, BEV)
- Lack some crucial components¹
 - 1. The necessities of each component is mentioned in Appendix.

Motivation- Towards Reliable Planning

Ours: Planning-oriented Autonomous Driving

What do we want:

 \mathbf{V}

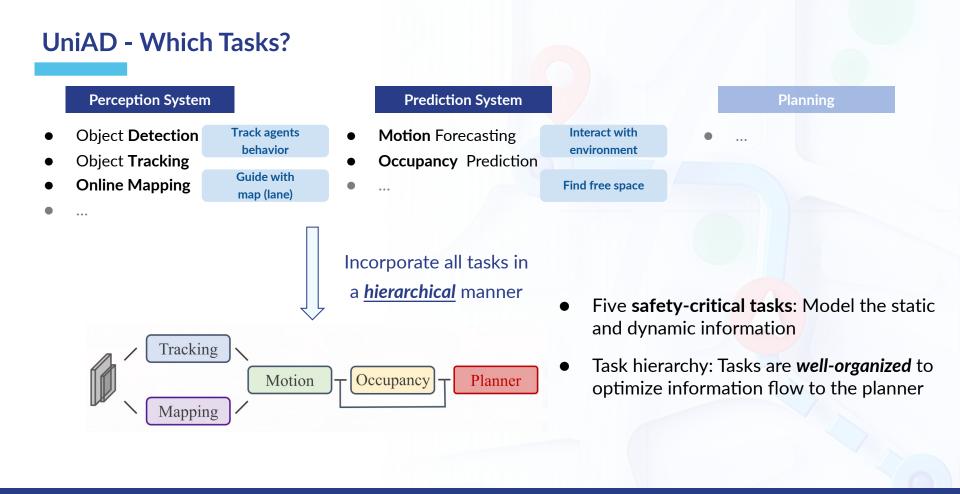
- Unify full-stack AD tasks
 - Coordinate all task towards safe planning

Open 🔁 riveLab

Which tasks?

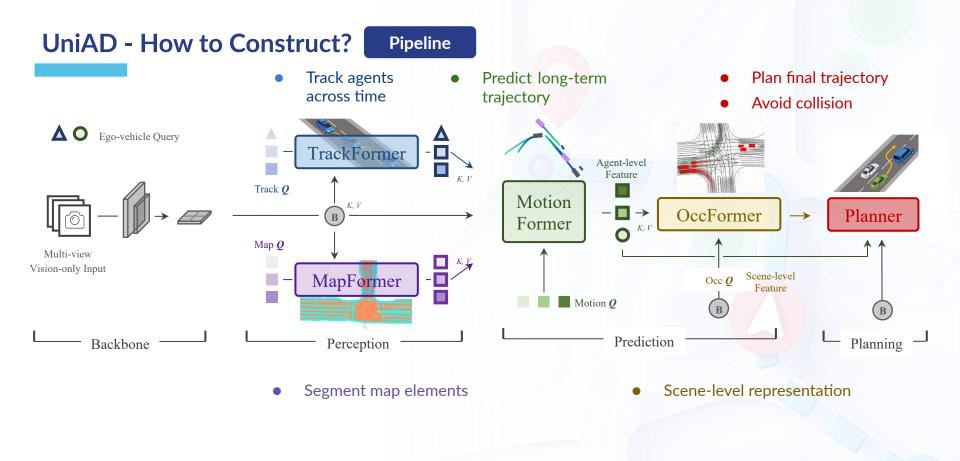
How to construct?

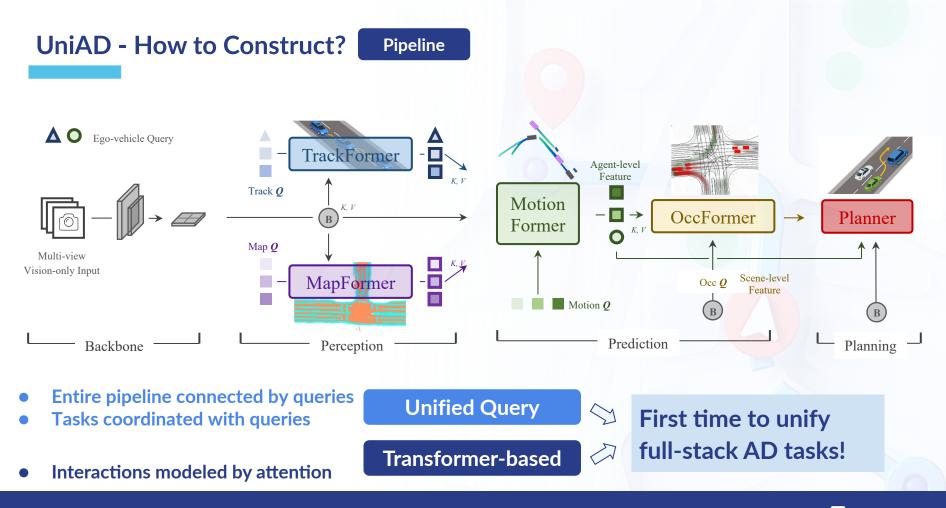
How to train?

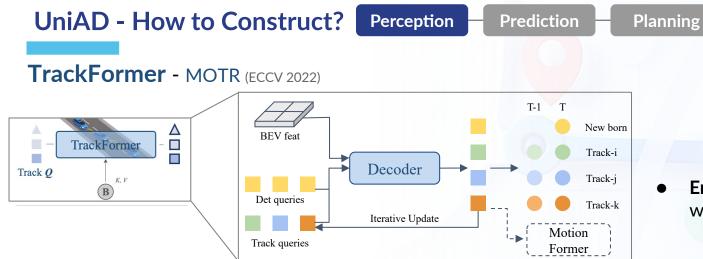


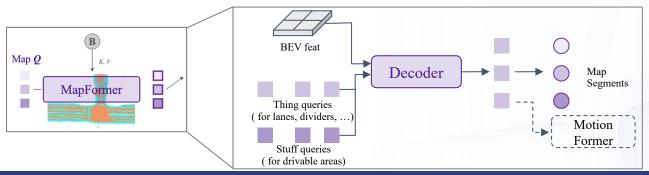
Planning-oriented Autonomous Driving

Delving into Details


Shanghai AI Laboratory | 上海人工智能实验室

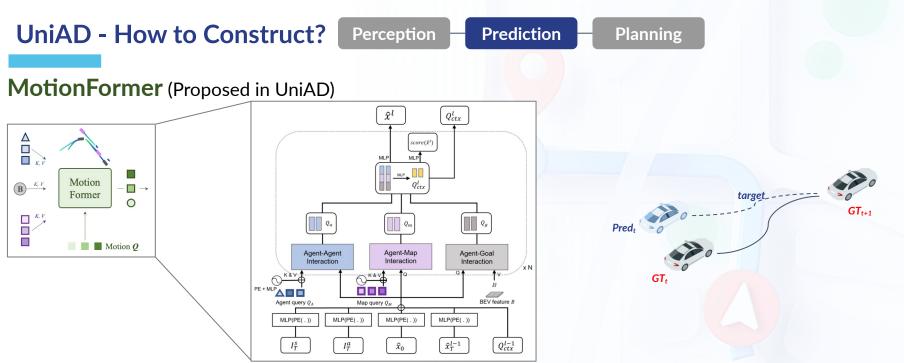

Shanghai AI Laboratory | 上海人工智能实验室




Open AriveLab

Open **P**riveLab

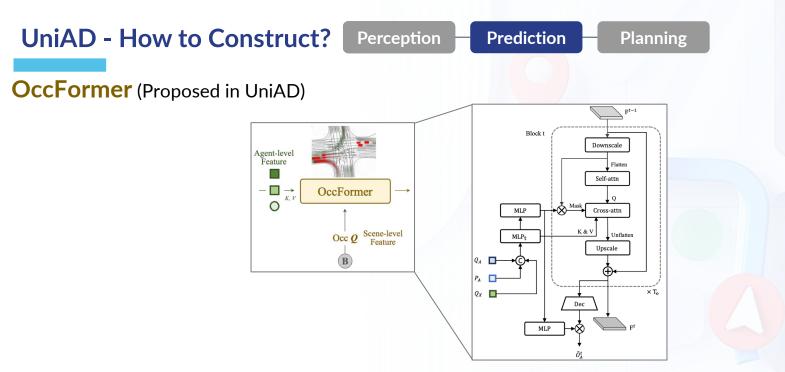
MapFormer - Panoptic SegFormer (CVPR 2022)



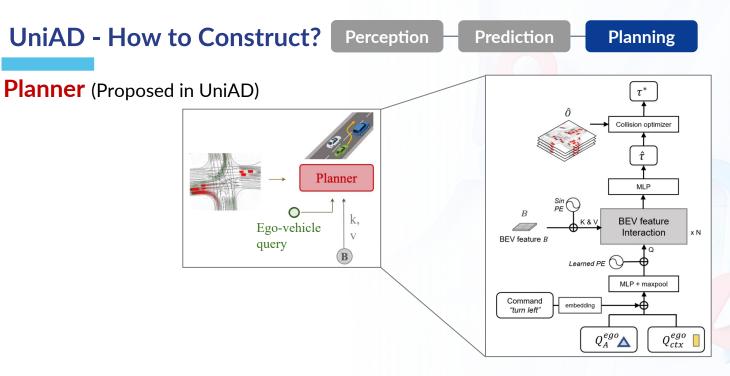
• End-to-end trainable tracking without post-association

• Each query represents a map element

Shanghai AI Laboratory | 上海人工智能实验室

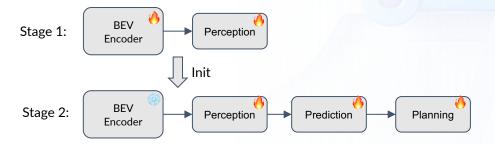

Open **A**riveLab

• Diverse **relation modelings** via attentions: Agent-agent, agent-map, agent-goal Non-linear optimization: Adjust ground-truth trajectory based on upstream predictions


Open riveLab

- Encode agent-wise knowledge into the scene representation
- Predict **occupancy as attention mask** to restrict the interactions between the agents and their corresponding BEV features.

- Ego-vehicle query: consistently models the ego-vehicle
- **Collision optimization:** Steer the predicted trajectories clear of predicted occupancy.



The Recipe - How to Train?

Two-phase training. Perception stage + End-to-end stage

- The stabilized perception capability helps the end-to-end stage **converge faster**

Shared matching. Matching results of tracking reused in motion and occupancy

- Consistent learning of agent identities
- Converging faster

Planning-oriented Autonomous Driving

Experiments

UniAD - Ablation Results

Tasks benefits each other and contribute to safe planning

			Modules			,	Tracking		Map	ping	Moti	on Forecasting			Occupanc	y Prediction		Pla	nning
ID	Track	Map	Motion	Occ.	Plan	AMOTA↑	AMOTP↓	IDS↓	IoU-lane↑	IoU-road↑	$minADE {\downarrow}$	minFDE↓	$MR {\downarrow}$	IoU-n.↑	IoU-f.↑	VPQ-n.↑	VPQ-f.↑	avg.L2↓	avg.Col.↓
0*	1	1	1	1	1	0.356	1.328	893	0.302	0.675	0.858	1.270	0.186	55.9	34.6	47.8	26.4	1.154	0.941
1	1					0.348	1.333	791	-	-	-	-	-	-	-	-	-	-	
2		1				-	-	-	0.305	0.674	-	-	-	-	-	-	-	-	-
3	1	1				0.355	1.336	<u>785</u>	0.301	0.671	-	-	-	-	-	-	-	-	
4			1			-	-	-	-	-	0.815	1.224	0.182	-	-	-	-	-	-
5	1		1			0.360	1.350	919	-	-	0.751	1.109	0.162	-	-	-	-	-	-
6	1	1	1			0.354	1.339	820	0.303	0.672	0.736(-9.7%)	1.066(-12.9%)	0.158	-	-	-	-	-	-
7				1		-	-	-	-	-	-	-	-	60.5	37.0	52.4	29.8	-	-
8	1			1		0.360	1.322	809	-	-		-	-	<u>62.1</u>	38.4	52.2	32.1	-	-
9	1	1	1	1		0.359	1.359	1057	0.304	0.675	0.710 (-3.5%)	1.005 (-5.8%)	0.146	62.3	<u>39.4</u>	53.1	<u>32.2</u>	-	-
10					1		-	-	-	-	-	-	-	-	-	-	-	1.131	0.773
11	1	1	1		1	0.366	1.337	889	0.303	0.672	0.741	1.077	0.157	-	-	-	-	<u>1.014</u>	<u>0.717</u>
12	1	1	1	1	1	0.358	1.334	641	0.302	0.672	0.728	1.054	0.154	62.3	39.5	<u>52.8</u>	32.3	1.004	0.430

Conclusion:

- **ID. 4-6:** Track & Map \rightarrow Motion **%**
- **ID. 10-12:** Motion & Occupancy \rightarrow Planning %

UniAD - Results

Even outperforms LiDAR-based counterparts on planning

				Plann	ing				
	Method		L2(<i>m</i>)↓			Col. Rate(%)↓			
	Method		2s	3s	Avg.	1s	2s	3s	Avg.
	NMP [†] [88]	-	-	2.31	-	-	-	1.92	-
	SA-NMP [†] [88]	-	-	2.05	-	-	-	1.59	-
†: LiDAR- based	FF [†] [36]	0.55	1.20	2.54	1.43	0.06	0.17	1.07	0.43
Daseu	EO [†] [42]	0.67	1.36	2.78	1.60	0.04	0.09	0.88	0.33
	ST-P3 [37]	1.33	2.11	2.90	2.11	0.23	0.62	1.27	0.71
Camera-based	UniAD	0.48	0.96	1.65	1.03	0.05	0.17	0.71	0.31

UniAD - Results

SOTA performance on all investigated tasks

Multi-object Tracking

Method	AMOTA↑	AMOTP↓	Recall↑	IDS↓
Immortal Tracker [†] [82]	0.378	1.119	0.478	936
ViP3D [30]	0.217	1.625	0.363	-
QD3DT [35]	0.242	1.518	0.399	-
MUTR3D [91]	0.294	1.498	0.427	3822
UniAD	0.359	1.320	0.467	906

Mapping

Method	Lanes↑	Drivable↑	Divider↑	Crossing↑
VPN [63]	18.0	76.0	-	-
LSS [66]	18.3	73.9	-	-
BEVFormer [48]	23.9	77.5	-	-
BEVerse [†] [92]	-	-	30.6	17.2
UniAD	31.3	69.1	25.7	13.8

Motion Forecasting

Method	$\min ADE(m)\downarrow$	$\min FDE(m)\downarrow$	MR↓	EPA↑
PnPNet [†] [50]	1.15	1.95	0.226	0.222
ViP3D [30]	2.05	2.84	0.246	0.226
Constant Pos.	5.80	10.27	0.347	-
Constant Vel.	2.13	4.01	0.318	-
UniAD	0.71	1.02	0.151	0.456

Occupancy Prediction

Method	IoU-n.↑	IoU-f.↑	VPQ-n.↑	VPQ-f.↑		
FIERY [34]	59.4	36.7	50.2	29.9		
StretchBEV [1]	55.5	37.1	46.0	29.0		
ST-P3 [37]	-	38.9	-	32.1		
BEVerse [†] [92]	61.4	40.9	54.3	36.1		
UniAD	63.4	40.2	54.7	33.5		

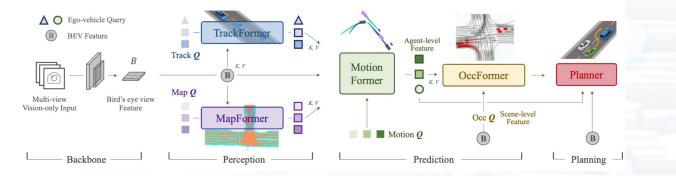
Shanghai AI Laboratory | 上海人工智能实验室

Open AriveLab

UniAD - Visualizations

Planner attends to crucial areas in complex scenes

UniAD - Recover from Upstream Errors


Planner could still attend to 'undetected' regions/objects

One-page Summary

- Planning-oriented Philosophy: An end-to-end autonomous driving (AD) framework in pursuit of safe planning, equipped with a wide span of AD tasks.
- Unified Query design: Queries as interfaces to connect and coordinate all tasks.
- State-of-the-art (SOTA) Performance with vision-only input.
- First Step towards Autonomous Driving Foundation Models

Open AriveLab

What's next? beyond UniAD

Embracing Foundation Models for Autonomous Driving

Shanghai Al Laboratory | 上海人工智能实验室

UniAD v2

Data & Training Strategy

- Multiple datasets with labels for various tasks?

Shippable Algorithm

- More modules integration, extensible to applications (e.g. v2x)

Closed-loop System

- Closed-loop training and testing in simulator & real world

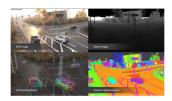
Check out the latest Survey Paper!

https://github.com/OpenDriveLab/ End-to-end-Autonomous-Driving

Beyond UniAD: DriveAGI

Data-centric Pipeline

Data Collection



Data Generation

Partial photo by courtesy of online resources.

Universal Foundation Model for autonomous driving

How to formulate? What's the objective goal?

Applications

Autonomous Driving

Broader Impact

Shanghai AI Laboratory | 上海人工智能实验室

Poster: THU-AM-131

THANKS https://opendrivelab.com

Shanghai Al Laboratory | 上海人工智能实验室